Persistence of zero sets
Homology, homotopy, and applications, Tome 19 (2017) no. 2, pp. 313-342.

Voir la notice de l'article provenant de la source International Press of Boston

We study robust properties of zero sets of continuous maps $f : X \to \mathbb{R}^n$. Formally, we analyze the family $Z_{\lt r} (f) := \lbrace g^{-1} (0) : \lVert g - f \rVert \lt r \rbrace$ of all zero sets of all continuous maps $g$ closer to $f$ than $r$ in the max-norm. All of these sets are outside $A := \lbrace x : \lvert f(x) \rvert \geqslant r \rbrace$ and we claim that $Z_{\lt r} (f)$ is fully determined by $A$ and an element of a certain cohomotopy group which (by a recent result) is computable whenever the dimension of $X$ is at most $2n - 3$. By considering all $r \gt 0$ simultaneously, the pointed cohomotopy groups form a persistence module—a structure leading to persistence diagrams as in the case of persistent homology or well groups. Eventually, we get a descriptor of persistent robust properties of zero sets that has better descriptive power (Theorem A) and better computability status (Theorem B) than the established well diagrams. Moreover, if we endow every point of each zero set with gradients of the perturbation, the robust description of the zero sets by elements of cohomotopy groups is in some sense the best possible (Theorem C).
DOI : 10.4310/HHA.2017.v19.n2.a16
Classification : 55-04, 65G20, 68Q25
Keywords: system of equations, computational homotopy theory, cohomotopy group
@article{HHA_2017_19_2_a15,
     author = {Peter Franek and Marek Kr\v{c}\'al},
     title = {Persistence of zero sets},
     journal = {Homology, homotopy, and applications},
     pages = {313--342},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2017},
     doi = {10.4310/HHA.2017.v19.n2.a16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n2.a16/}
}
TY  - JOUR
AU  - Peter Franek
AU  - Marek Krčál
TI  - Persistence of zero sets
JO  - Homology, homotopy, and applications
PY  - 2017
SP  - 313
EP  - 342
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n2.a16/
DO  - 10.4310/HHA.2017.v19.n2.a16
LA  - en
ID  - HHA_2017_19_2_a15
ER  - 
%0 Journal Article
%A Peter Franek
%A Marek Krčál
%T Persistence of zero sets
%J Homology, homotopy, and applications
%D 2017
%P 313-342
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n2.a16/
%R 10.4310/HHA.2017.v19.n2.a16
%G en
%F HHA_2017_19_2_a15
Peter Franek; Marek Krčál. Persistence of zero sets. Homology, homotopy, and applications, Tome 19 (2017) no. 2, pp. 313-342. doi : 10.4310/HHA.2017.v19.n2.a16. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n2.a16/

Cité par Sources :