Univalence for inverse EI diagrams
Homology, homotopy, and applications, Tome 19 (2017) no. 2, pp. 219-249.

Voir la notice de l'article provenant de la source International Press of Boston

We construct a new model category presenting the homotopy theory of presheaves on “inverse $\mathrm{EI} (\infty,1)$-categories”, which contains universe objects that satisfy Voevodsky’s univalence axiom. In addition to diagrams on ordinary inverse categories, as considered in previous work of the author, this includes a new model for equivariant algebraic topology with a compact Lie group of equivariance. Thus, it offers the potential for applications of homotopy type theory to equivariant homotopy theory.
DOI : 10.4310/HHA.2017.v19.n2.a12
Classification : 03G30, 18G55, 55U35
Keywords: homotopy type theory, univalence axiom, inverse category, EI-category
@article{HHA_2017_19_2_a11,
     author = {Michael Shulman},
     title = {Univalence for inverse {EI} diagrams},
     journal = {Homology, homotopy, and applications},
     pages = {219--249},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2017},
     doi = {10.4310/HHA.2017.v19.n2.a12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n2.a12/}
}
TY  - JOUR
AU  - Michael Shulman
TI  - Univalence for inverse EI diagrams
JO  - Homology, homotopy, and applications
PY  - 2017
SP  - 219
EP  - 249
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n2.a12/
DO  - 10.4310/HHA.2017.v19.n2.a12
LA  - en
ID  - HHA_2017_19_2_a11
ER  - 
%0 Journal Article
%A Michael Shulman
%T Univalence for inverse EI diagrams
%J Homology, homotopy, and applications
%D 2017
%P 219-249
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n2.a12/
%R 10.4310/HHA.2017.v19.n2.a12
%G en
%F HHA_2017_19_2_a11
Michael Shulman. Univalence for inverse EI diagrams. Homology, homotopy, and applications, Tome 19 (2017) no. 2, pp. 219-249. doi : 10.4310/HHA.2017.v19.n2.a12. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n2.a12/

Cité par Sources :