(Co)homology of poset Lie algebras
Homology, homotopy, and applications, Tome 19 (2017) no. 2, pp. 1-20.

Voir la notice de l'article provenant de la source International Press of Boston

We investigate (co)homological properties of Lie algebras that are constructed from a finite poset: the solvable class $\mathfrak{gl}^\preceq$ and the nilpotent class $\mathfrak{gl}^\prec$. We confirm the conjecture [reference 8, 1.16(1), p. 141] that says: every prime power $p_r \leqslant n-2$ appears as torsion in $H_{*} (\mathfrak{nil}_n ; \mathbb{Z})$, and every prime power $p_r \leqslant n-1$ appears as torsion in $H_{*} (\mathfrak{sol}_n ; \mathbb{Z})$. If $\preceq$ is a bounded poset, then the (co)homology of $\mathfrak{gl}^\preceq$ is torsion-convex, i.e., if it contains $p$-torsion, then it also contains $p^{\prime}$-torsion for every prime $p^{\prime} \lt p$. We obtain new explicit formulas for the (co)homology of some families over arbitrary fields. Among them are the solvable non-nilpotent analogs of the Heisenberg Lie algebras from [reference 2], the 2-step Lie algebras from [reference 1], strictly block-triangular Lie algebras, etc. The combinatorics of how the resulting generating functions are obtained are interesting in their own right. All this is done by using AMT (algebraic Morse theory [references 9, 12, 8]). This article serves as a source of examples of how to construct useful acyclic matchings, each of which in turn induces compelling combinatorial problems and solutions. It also enables graph theory to be used in homological algebra.
DOI : 10.4310/HHA.2017.v19.n2.a1
Classification : 13D02, 13P20, 17B56, 18G35, 55-04, 58E05
Keywords: algebraic/discrete Morse theory, homological algebra, chain complex, acyclic matching, solvable Lie algebra, triangular matrix, torsion table, algebraic combinatorics
@article{HHA_2017_19_2_a0,
     author = {Leon Lampret and Ale\v{s} Vavpeti\v{c}},
     title = {(Co)homology of poset {Lie} algebras},
     journal = {Homology, homotopy, and applications},
     pages = {1--20},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2017},
     doi = {10.4310/HHA.2017.v19.n2.a1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n2.a1/}
}
TY  - JOUR
AU  - Leon Lampret
AU  - Aleš Vavpetič
TI  - (Co)homology of poset Lie algebras
JO  - Homology, homotopy, and applications
PY  - 2017
SP  - 1
EP  - 20
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n2.a1/
DO  - 10.4310/HHA.2017.v19.n2.a1
LA  - en
ID  - HHA_2017_19_2_a0
ER  - 
%0 Journal Article
%A Leon Lampret
%A Aleš Vavpetič
%T (Co)homology of poset Lie algebras
%J Homology, homotopy, and applications
%D 2017
%P 1-20
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n2.a1/
%R 10.4310/HHA.2017.v19.n2.a1
%G en
%F HHA_2017_19_2_a0
Leon Lampret; Aleš Vavpetič. (Co)homology of poset Lie algebras. Homology, homotopy, and applications, Tome 19 (2017) no. 2, pp. 1-20. doi : 10.4310/HHA.2017.v19.n2.a1. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n2.a1/

Cité par Sources :