Duality in the homology of 5-manifolds
Homology, homotopy, and applications, Tome 19 (2017) no. 1, pp. 171-179.

Voir la notice de l'article provenant de la source International Press of Boston

We show that the homological properties of a 5-manifold $M$ with fundamental group $G$ are encapsulated in a $G$-invariant stable form on the dual of the third syzygy of $\mathbb{Z}$. In this notation one may express an even stronger version of Poincaré duality for $M$. However, we find an obstruction to this duality.
DOI : 10.4310/HHA.2017.v19.n1.a9
Classification : 55N45, 55N91, 55U15, 57M60, 57P10
Keywords: manifold, Poincaré duality, chain complex
@article{HHA_2017_19_1_a8,
     author = {W.H. Mannan},
     title = {Duality in the homology of 5-manifolds},
     journal = {Homology, homotopy, and applications},
     pages = {171--179},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017},
     doi = {10.4310/HHA.2017.v19.n1.a9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a9/}
}
TY  - JOUR
AU  - W.H. Mannan
TI  - Duality in the homology of 5-manifolds
JO  - Homology, homotopy, and applications
PY  - 2017
SP  - 171
EP  - 179
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a9/
DO  - 10.4310/HHA.2017.v19.n1.a9
LA  - en
ID  - HHA_2017_19_1_a8
ER  - 
%0 Journal Article
%A W.H. Mannan
%T Duality in the homology of 5-manifolds
%J Homology, homotopy, and applications
%D 2017
%P 171-179
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a9/
%R 10.4310/HHA.2017.v19.n1.a9
%G en
%F HHA_2017_19_1_a8
W.H. Mannan. Duality in the homology of 5-manifolds. Homology, homotopy, and applications, Tome 19 (2017) no. 1, pp. 171-179. doi : 10.4310/HHA.2017.v19.n1.a9. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a9/

Cité par Sources :