Comparison of power operations in Morava $E$-theories
Homology, homotopy, and applications, Tome 19 (2017) no. 1, pp. 59-87.

Voir la notice de l'article provenant de la source International Press of Boston

There is a Hopf algebroid without antipode which is the dual of the algebra of power operations in Morava $E$-theory. In this paper we compare the category of comodules over the Hopf algebroid in the $n$th Morava $E$-theory with that in the $(n + 1)$st Morava $E$-theory. We show that the $n$th Morava $E$-theory of a finite complex with power operations can be obtained from the $(n + 1)$st Morava $E$-theory with power operations.
DOI : 10.4310/HHA.2017.v19.n1.a4
Classification : 14L05, 55N22, 55S25
Keywords: Morava $E$-theory, power operation, $p$-divisible group, Hopf algebroid
@article{HHA_2017_19_1_a3,
     author = {Takeshi Torii},
     title = {Comparison of power operations in {Morava} $E$-theories},
     journal = {Homology, homotopy, and applications},
     pages = {59--87},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017},
     doi = {10.4310/HHA.2017.v19.n1.a4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a4/}
}
TY  - JOUR
AU  - Takeshi Torii
TI  - Comparison of power operations in Morava $E$-theories
JO  - Homology, homotopy, and applications
PY  - 2017
SP  - 59
EP  - 87
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a4/
DO  - 10.4310/HHA.2017.v19.n1.a4
LA  - en
ID  - HHA_2017_19_1_a3
ER  - 
%0 Journal Article
%A Takeshi Torii
%T Comparison of power operations in Morava $E$-theories
%J Homology, homotopy, and applications
%D 2017
%P 59-87
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a4/
%R 10.4310/HHA.2017.v19.n1.a4
%G en
%F HHA_2017_19_1_a3
Takeshi Torii. Comparison of power operations in Morava $E$-theories. Homology, homotopy, and applications, Tome 19 (2017) no. 1, pp. 59-87. doi : 10.4310/HHA.2017.v19.n1.a4. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a4/

Cité par Sources :