Bousfield localization of ghost maps
Homology, homotopy, and applications, Tome 19 (2017) no. 1, pp. 371-389.

Voir la notice de l'article provenant de la source International Press of Boston

In homotopy theory, a ghost map is a map that induces the zero map on all stable homotopy groups. Bousfield localization is the homotopy-theoretic analogue of localization for rings and modules. In this paper, we consider the Bousfield localization of ghost maps. In particular, we pose the question: for which localization functors is it the case that the localization of a ghost is always a ghost? On the category of $p$-local spectra, we conjecture that the only localizations satisfying this property are the zero functor, the identity functor, and localization with respect to the rational Eilenberg–Mac Lane spectrum $H\mathbb{Q}$.We significantly narrow the field of possible counter-examples (one interesting outstanding possibility is the Brown–Comenetz dual of the sphere) and we consider a weaker version of the question at hand.
DOI : 10.4310/HHA.2017.v19.n1.a18
Classification : 55P42, 55P60
Keywords: Bousfield localization, ghost map, ghost-preserving localization
@article{HHA_2017_19_1_a17,
     author = {Mark Hovey and Keir Lockridge},
     title = {Bousfield localization of ghost maps},
     journal = {Homology, homotopy, and applications},
     pages = {371--389},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017},
     doi = {10.4310/HHA.2017.v19.n1.a18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a18/}
}
TY  - JOUR
AU  - Mark Hovey
AU  - Keir Lockridge
TI  - Bousfield localization of ghost maps
JO  - Homology, homotopy, and applications
PY  - 2017
SP  - 371
EP  - 389
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a18/
DO  - 10.4310/HHA.2017.v19.n1.a18
LA  - en
ID  - HHA_2017_19_1_a17
ER  - 
%0 Journal Article
%A Mark Hovey
%A Keir Lockridge
%T Bousfield localization of ghost maps
%J Homology, homotopy, and applications
%D 2017
%P 371-389
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a18/
%R 10.4310/HHA.2017.v19.n1.a18
%G en
%F HHA_2017_19_1_a17
Mark Hovey; Keir Lockridge. Bousfield localization of ghost maps. Homology, homotopy, and applications, Tome 19 (2017) no. 1, pp. 371-389. doi : 10.4310/HHA.2017.v19.n1.a18. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a18/

Cité par Sources :