Relative Tate objects and boundary maps in the $K$-theory of coherent sheaves
Homology, homotopy, and applications, Tome 19 (2017) no. 1, pp. 341-369.

Voir la notice de l'article provenant de la source International Press of Boston

We investigate the properties of relative analogues of admissible Ind, Pro, and elementary Tate objects for pairs of exact categories, and give criteria for those categories to be abelian. A relative index map is introduced, and as an application we deduce a description for boundary morphisms in the $K$-theory of coherent sheaves on Noetherian schemes.
DOI : 10.4310/HHA.2017.v19.n1.a17
Classification : 19D99, 22B99
Keywords: Tate object, ind-pro object, boundary map
@article{HHA_2017_19_1_a16,
     author = {Oliver Braunling and Michael Groechenig and Jesse Wolfson},
     title = {Relative {Tate} objects and boundary maps in the $K$-theory of coherent sheaves},
     journal = {Homology, homotopy, and applications},
     pages = {341--369},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017},
     doi = {10.4310/HHA.2017.v19.n1.a17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a17/}
}
TY  - JOUR
AU  - Oliver Braunling
AU  - Michael Groechenig
AU  - Jesse Wolfson
TI  - Relative Tate objects and boundary maps in the $K$-theory of coherent sheaves
JO  - Homology, homotopy, and applications
PY  - 2017
SP  - 341
EP  - 369
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a17/
DO  - 10.4310/HHA.2017.v19.n1.a17
LA  - en
ID  - HHA_2017_19_1_a16
ER  - 
%0 Journal Article
%A Oliver Braunling
%A Michael Groechenig
%A Jesse Wolfson
%T Relative Tate objects and boundary maps in the $K$-theory of coherent sheaves
%J Homology, homotopy, and applications
%D 2017
%P 341-369
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a17/
%R 10.4310/HHA.2017.v19.n1.a17
%G en
%F HHA_2017_19_1_a16
Oliver Braunling; Michael Groechenig; Jesse Wolfson. Relative Tate objects and boundary maps in the $K$-theory of coherent sheaves. Homology, homotopy, and applications, Tome 19 (2017) no. 1, pp. 341-369. doi : 10.4310/HHA.2017.v19.n1.a17. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a17/

Cité par Sources :