Čech complexes for covers of small categories
Homology, homotopy, and applications, Tome 19 (2017) no. 1, pp. 281-291.

Voir la notice de l'article provenant de la source International Press of Boston

We present a combinatorial analogue of the nerve theorem for covers of small categories, using the Grothendieck construction. We apply our result to prove the inclusion-exclusion principle for the Euler characteristic of a finite category.
DOI : 10.4310/HHA.2017.v19.n1.a14
Classification : 46M20, 55P10
Keywords: nerve theorem, small category, inclusion-exclusion principle, Euler characteristic
@article{HHA_2017_19_1_a13,
     author = {Kohei Tanaka},
     title = {\v{C}ech complexes for covers of small categories},
     journal = {Homology, homotopy, and applications},
     pages = {281--291},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017},
     doi = {10.4310/HHA.2017.v19.n1.a14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a14/}
}
TY  - JOUR
AU  - Kohei Tanaka
TI  - Čech complexes for covers of small categories
JO  - Homology, homotopy, and applications
PY  - 2017
SP  - 281
EP  - 291
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a14/
DO  - 10.4310/HHA.2017.v19.n1.a14
LA  - en
ID  - HHA_2017_19_1_a13
ER  - 
%0 Journal Article
%A Kohei Tanaka
%T Čech complexes for covers of small categories
%J Homology, homotopy, and applications
%D 2017
%P 281-291
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a14/
%R 10.4310/HHA.2017.v19.n1.a14
%G en
%F HHA_2017_19_1_a13
Kohei Tanaka. Čech complexes for covers of small categories. Homology, homotopy, and applications, Tome 19 (2017) no. 1, pp. 281-291. doi : 10.4310/HHA.2017.v19.n1.a14. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a14/

Cité par Sources :