Topological Hochschild homology of $K/p$ as a $K_p^\wedge$ module
Homology, homotopy, and applications, Tome 19 (2017) no. 1, pp. 253-280.

Voir la notice de l'article provenant de la source International Press of Boston

For commutative ring spectra $R$, one can construct a Thom spectrum for spaces over $BGL_1R$. This specialises to the classical Thom spectra for spherical fibrations in the case of the sphere spectrum. The construction is useful in detecting $A_\infty$-structures: a loop space (up to homotopy) over $BGL_1R$ yields an $A_\infty$-ring structure on the Thom spectrum. The topological Hochschild homology of these $A_\infty$-ring spectra may be expressed as Thom spectra. This paper uses the identification of topological Hochschild homology of Thom spectra to make computations. Specifically, we take $R$ to be the $p$-adic $K$-theory spectrum and consider a certain map from $S^1$ to $BGL_1R$, so that the Thom spectrum is equivalent to the $\textrm{mod}\, p$ $K$-theory spectrum. We make computations at odd primes.
DOI : 10.4310/HHA.2017.v19.n1.a13
Classification : 55P42, 55N15, 55P43
Keywords: Thom spectra, topological Hochschild homology, $K$-theory
@article{HHA_2017_19_1_a12,
     author = {Samik Basu},
     title = {Topological {Hochschild} homology of $K/p$ as a $K_p^\wedge$ module},
     journal = {Homology, homotopy, and applications},
     pages = {253--280},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017},
     doi = {10.4310/HHA.2017.v19.n1.a13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a13/}
}
TY  - JOUR
AU  - Samik Basu
TI  - Topological Hochschild homology of $K/p$ as a $K_p^\wedge$ module
JO  - Homology, homotopy, and applications
PY  - 2017
SP  - 253
EP  - 280
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a13/
DO  - 10.4310/HHA.2017.v19.n1.a13
LA  - en
ID  - HHA_2017_19_1_a12
ER  - 
%0 Journal Article
%A Samik Basu
%T Topological Hochschild homology of $K/p$ as a $K_p^\wedge$ module
%J Homology, homotopy, and applications
%D 2017
%P 253-280
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a13/
%R 10.4310/HHA.2017.v19.n1.a13
%G en
%F HHA_2017_19_1_a12
Samik Basu. Topological Hochschild homology of $K/p$ as a $K_p^\wedge$ module. Homology, homotopy, and applications, Tome 19 (2017) no. 1, pp. 253-280. doi : 10.4310/HHA.2017.v19.n1.a13. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a13/

Cité par Sources :