Rational $O(2)$-equivariant spectra
Homology, homotopy, and applications, Tome 19 (2017) no. 1, pp. 225-252.

Voir la notice de l'article provenant de la source International Press of Boston

The category of rational $O(2)$-equivariant cohomology theories has an algebraic model $\mathcal{A}(O(2))$, as established by work of Greenlees. That is, there is an equivalence of categories between the homotopy category of rational $O(2)$-equivariant spectra and the derived category of the abelian model $D\mathcal{A}(O(2))$. In this paper we lift this equivalence of homotopy categories to the level of Quillen equivalences of model categories. This Quillen equivalence is also compatible with the Adams short exact sequence of the algebraic model.
DOI : 10.4310/HHA.2017.v19.n1.a12
Classification : 55N91, 55P42, 55P60
Keywords: equivariant spectrum, model category, right Bousfield localisation, ring spectrum, algebraic model
@article{HHA_2017_19_1_a11,
     author = {David Barnes},
     title = {Rational $O(2)$-equivariant spectra},
     journal = {Homology, homotopy, and applications},
     pages = {225--252},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017},
     doi = {10.4310/HHA.2017.v19.n1.a12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a12/}
}
TY  - JOUR
AU  - David Barnes
TI  - Rational $O(2)$-equivariant spectra
JO  - Homology, homotopy, and applications
PY  - 2017
SP  - 225
EP  - 252
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a12/
DO  - 10.4310/HHA.2017.v19.n1.a12
LA  - en
ID  - HHA_2017_19_1_a11
ER  - 
%0 Journal Article
%A David Barnes
%T Rational $O(2)$-equivariant spectra
%J Homology, homotopy, and applications
%D 2017
%P 225-252
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a12/
%R 10.4310/HHA.2017.v19.n1.a12
%G en
%F HHA_2017_19_1_a11
David Barnes. Rational $O(2)$-equivariant spectra. Homology, homotopy, and applications, Tome 19 (2017) no. 1, pp. 225-252. doi : 10.4310/HHA.2017.v19.n1.a12. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a12/

Cité par Sources :