Postnikov decomposition and the group of self-equivalences of a rationalized space
Homology, homotopy, and applications, Tome 19 (2017) no. 1, pp. 209-224.

Voir la notice de l'article provenant de la source International Press of Boston

Let $X$ be a simply connected rational CW complex of finite type. Write $X^{[n]}$ for the $n\text{th}$ Postnikov section of $X$. Let $\mathcal E(X^{[n+1]})$ denote the group of homotopy self-equivalences of $X^{[n+1]}$. We use Sullivan models in rational homotopy theory to construct two short exact sequences:\[\mathrm{Hom}\big(\pi_{n+1}(X);H^{n+1}(X^{[n]})\big) \rightarrowtail\mathcal{E}(X^{[n+1]}) \twoheadrightarrow D^{n+1}_{n},\]\[\mathrm{Hom}\big(\pi_{n+1}(X);H^{n+1}(X^{[n]})\big) \rightarrowtail\mathcal{E}_{\sharp}(X^{[n+1]}) \twoheadrightarrow G^{n+1}_{n},\]where $D^{n+1}_{n}$ is a subgroup of $\mathrm{aut}(\mathrm{Hom}(\pi_{q}(X) ;\Bbb Q))\times \mathcal{E}(X^{[n]})$ which is defined in terms of the Whitehead exact sequence of $X$ and where $G^{n+1}_{n}$ is a certain subgroup of $\mathcal E_{\sharp}(X^{[n]})$. Here $\mathcal E_{\sharp}(X^{[n]})$ is the subgroup of those elements inducing the identity on the homotopy groups. Moreover, we give an alternative proof of the Costoya–Viruel theorem: Every finite group occurs as $\mathcal E(X)$ where $X$ is rational.
DOI : 10.4310/HHA.2017.v19.n1.a11
Classification : 55P10
Keywords: group of homotopy self-equivalences, Whitehead exact sequence, Sullivan model, rational homotopy theory, Postnikov tower
@article{HHA_2017_19_1_a10,
     author = {Mahmoud Benkhalifa},
     title = {Postnikov decomposition and the group of self-equivalences of a rationalized space},
     journal = {Homology, homotopy, and applications},
     pages = {209--224},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017},
     doi = {10.4310/HHA.2017.v19.n1.a11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a11/}
}
TY  - JOUR
AU  - Mahmoud Benkhalifa
TI  - Postnikov decomposition and the group of self-equivalences of a rationalized space
JO  - Homology, homotopy, and applications
PY  - 2017
SP  - 209
EP  - 224
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a11/
DO  - 10.4310/HHA.2017.v19.n1.a11
LA  - en
ID  - HHA_2017_19_1_a10
ER  - 
%0 Journal Article
%A Mahmoud Benkhalifa
%T Postnikov decomposition and the group of self-equivalences of a rationalized space
%J Homology, homotopy, and applications
%D 2017
%P 209-224
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a11/
%R 10.4310/HHA.2017.v19.n1.a11
%G en
%F HHA_2017_19_1_a10
Mahmoud Benkhalifa. Postnikov decomposition and the group of self-equivalences of a rationalized space. Homology, homotopy, and applications, Tome 19 (2017) no. 1, pp. 209-224. doi : 10.4310/HHA.2017.v19.n1.a11. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a11/

Cité par Sources :