The slices of $S^n \wedge H \underline{\mathbb{Z}}$ for cyclic $p$-groups
Homology, homotopy, and applications, Tome 19 (2017) no. 1, pp. 1-22.

Voir la notice de l'article provenant de la source International Press of Boston

The slice filtration is a filtration of equivariant spectra. While the tower is analogous to the Postnikov tower in the nonequivariant setting, complete slice towers are known for relatively few $G$-spectra. In this paper, we determine the slice tower for all $G$-spectra of the form $S^n \wedge H \underline{\mathbb{Z}}$ where $n\geq 0$ and $G$ is a cyclic $p$-group for $p$ an odd prime.
DOI : 10.4310/HHA.2017.v19.n1.a1
Classification : 55N91, 55P91
Keywords: slice filtration, equivariant homotopy
@article{HHA_2017_19_1_a0,
     author = {Carolyn Yarnall},
     title = {The slices of $S^n \wedge H \underline{\mathbb{Z}}$ for cyclic $p$-groups},
     journal = {Homology, homotopy, and applications},
     pages = {1--22},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017},
     doi = {10.4310/HHA.2017.v19.n1.a1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a1/}
}
TY  - JOUR
AU  - Carolyn Yarnall
TI  - The slices of $S^n \wedge H \underline{\mathbb{Z}}$ for cyclic $p$-groups
JO  - Homology, homotopy, and applications
PY  - 2017
SP  - 1
EP  - 22
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a1/
DO  - 10.4310/HHA.2017.v19.n1.a1
LA  - en
ID  - HHA_2017_19_1_a0
ER  - 
%0 Journal Article
%A Carolyn Yarnall
%T The slices of $S^n \wedge H \underline{\mathbb{Z}}$ for cyclic $p$-groups
%J Homology, homotopy, and applications
%D 2017
%P 1-22
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a1/
%R 10.4310/HHA.2017.v19.n1.a1
%G en
%F HHA_2017_19_1_a0
Carolyn Yarnall. The slices of $S^n \wedge H \underline{\mathbb{Z}}$ for cyclic $p$-groups. Homology, homotopy, and applications, Tome 19 (2017) no. 1, pp. 1-22. doi : 10.4310/HHA.2017.v19.n1.a1. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2017.v19.n1.a1/

Cité par Sources :