On the $f$-invariant of products
Homology, homotopy, and applications, Tome 18 (2016) no. 2, pp. 169-176.

Voir la notice de l'article provenant de la source International Press of Boston

The $f$-invariant is a higher version of the $e$-invariant that takes values in the divided congruences between modular forms; in the situation of a cartesian product of two framed manifolds, the $f$-invariant can actually be computed from the $e$-invariants of the factors. The purpose of this note is to determine the $f$-invariant of all such products.
DOI : 10.4310/HHA.2016.v18.n2.a8
Classification : 55Q45
Keywords: stable homotopy group, $f$-invariant
@article{HHA_2016_18_2_a7,
     author = {Hanno von Bodecker},
     title = {On the $f$-invariant of products},
     journal = {Homology, homotopy, and applications},
     pages = {169--176},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2016},
     doi = {10.4310/HHA.2016.v18.n2.a8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a8/}
}
TY  - JOUR
AU  - Hanno von Bodecker
TI  - On the $f$-invariant of products
JO  - Homology, homotopy, and applications
PY  - 2016
SP  - 169
EP  - 176
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a8/
DO  - 10.4310/HHA.2016.v18.n2.a8
LA  - en
ID  - HHA_2016_18_2_a7
ER  - 
%0 Journal Article
%A Hanno von Bodecker
%T On the $f$-invariant of products
%J Homology, homotopy, and applications
%D 2016
%P 169-176
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a8/
%R 10.4310/HHA.2016.v18.n2.a8
%G en
%F HHA_2016_18_2_a7
Hanno von Bodecker. On the $f$-invariant of products. Homology, homotopy, and applications, Tome 18 (2016) no. 2, pp. 169-176. doi : 10.4310/HHA.2016.v18.n2.a8. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a8/

Cité par Sources :