On the cohomology of oriented Grassmann manifolds
Homology, homotopy, and applications, Tome 18 (2016) no. 2, pp. 71-84.

Voir la notice de l'article provenant de la source International Press of Boston

This paper presents a new approach to studying the kernel of the additive homomorphism from $H^q(G_{n,k})$ to $H^{q+1}(G_{n,k})$ given by the cup-product with the first Stiefel–Whitney class of the canonical $k$-plane bundle over the Grassmann manifold $G_{n,k}$ of all $k$-dimensional vector subspaces in Euclidean $n$-space. This method enables us to improve the understanding of the $\mathbb{Z}_2$-cohomology of the “oriented” Grassmann manifold $\widetilde{G}_{n,k}$ of oriented $k$-dimensional vector subspaces in Euclidean $n$-space. In particular, we derive new information on the characteristic rank of the canonical oriented $k$-plane bundle over $\widetilde{G}_{n,k}$ and the $\mathbb{Z}_2$-cup-length of $\widetilde{G}_{n,k}$. Our results on the cup-length for three infinite families of the manifolds $\widetilde{G}_{n,3}$ confirm the corresponding claims of Fukaya’s conjecture from 2008.
DOI : 10.4310/HHA.2016.v18.n2.a4
Classification : 55R25, 57R20
Keywords: Stiefel–Whitney class, characteristic rank, cup-length, Grassmann manifold
@article{HHA_2016_18_2_a3,
     author = {J\'ulius Korba\v{s} and Tom\'a\v{s} Rusin},
     title = {On the cohomology of oriented {Grassmann} manifolds},
     journal = {Homology, homotopy, and applications},
     pages = {71--84},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2016},
     doi = {10.4310/HHA.2016.v18.n2.a4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a4/}
}
TY  - JOUR
AU  - Július Korbaš
AU  - Tomáš Rusin
TI  - On the cohomology of oriented Grassmann manifolds
JO  - Homology, homotopy, and applications
PY  - 2016
SP  - 71
EP  - 84
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a4/
DO  - 10.4310/HHA.2016.v18.n2.a4
LA  - en
ID  - HHA_2016_18_2_a3
ER  - 
%0 Journal Article
%A Július Korbaš
%A Tomáš Rusin
%T On the cohomology of oriented Grassmann manifolds
%J Homology, homotopy, and applications
%D 2016
%P 71-84
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a4/
%R 10.4310/HHA.2016.v18.n2.a4
%G en
%F HHA_2016_18_2_a3
Július Korbaš; Tomáš Rusin. On the cohomology of oriented Grassmann manifolds. Homology, homotopy, and applications, Tome 18 (2016) no. 2, pp. 71-84. doi : 10.4310/HHA.2016.v18.n2.a4. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a4/

Cité par Sources :