Motion planning in real flag manifolds
Homology, homotopy, and applications, Tome 18 (2016) no. 2, pp. 359-375.

Voir la notice de l'article provenant de la source International Press of Boston

Starting from Borel’s description of the mod-2 cohomology of real flag manifolds, we give a minimal presentation of the cohomology ring of semi-complete flag manifolds $F_{k,m}:=F(1,\ldots,1,m)$, where $1$ is repeated $k$ times. This is used to estimate Farber’s topological complexity of $F_{k,m}$ when $m$ approaches (from below) a 2-power. In particular, we get almost sharp estimates for $F_{2,2^e-1}$ which resemble the known situation for the real projective spaces $F_{1,2^e}$. Our results indicate that the agreement between the topological complexity and the immersion dimension of real projective spaces no longer holds for other flag manifolds. We also get corresponding results for the $s$-th higher topological complexity of these spaces, proving the surprising fact that, as $s$ increases, our cohomological estimates become stronger. Indeed, we get a full description of the higher motion planning problem of some of these manifolds. As a byproduct, we get a complete computation of the higher topological complexity of all closed surfaces (orientable or not).
DOI : 10.4310/HHA.2016.v18.n2.a20
Classification : 55M30, 57T15, 68T40, 70B15
Keywords: flag manifold, surface, topological complexity, zero-divisors cup-length, motion planning
@article{HHA_2016_18_2_a19,
     author = {Jes\'us Gonz\'alez and B\'arbara Guti\'errez and Darwin Guti\'errez and Adriana Lara},
     title = {Motion planning in real flag manifolds},
     journal = {Homology, homotopy, and applications},
     pages = {359--375},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2016},
     doi = {10.4310/HHA.2016.v18.n2.a20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a20/}
}
TY  - JOUR
AU  - Jesús González
AU  - Bárbara Gutiérrez
AU  - Darwin Gutiérrez
AU  - Adriana Lara
TI  - Motion planning in real flag manifolds
JO  - Homology, homotopy, and applications
PY  - 2016
SP  - 359
EP  - 375
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a20/
DO  - 10.4310/HHA.2016.v18.n2.a20
LA  - en
ID  - HHA_2016_18_2_a19
ER  - 
%0 Journal Article
%A Jesús González
%A Bárbara Gutiérrez
%A Darwin Gutiérrez
%A Adriana Lara
%T Motion planning in real flag manifolds
%J Homology, homotopy, and applications
%D 2016
%P 359-375
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a20/
%R 10.4310/HHA.2016.v18.n2.a20
%G en
%F HHA_2016_18_2_a19
Jesús González; Bárbara Gutiérrez; Darwin Gutiérrez; Adriana Lara. Motion planning in real flag manifolds. Homology, homotopy, and applications, Tome 18 (2016) no. 2, pp. 359-375. doi : 10.4310/HHA.2016.v18.n2.a20. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a20/

Cité par Sources :