On nontriviality of certain homotopy groups of spheres
Homology, homotopy, and applications, Tome 18 (2016) no. 2, pp. 337-344.

Voir la notice de l'article provenant de la source International Press of Boston

We provide an alternative proof of Gray’s result that, for an odd prime $p$, there is a non-trivial $\mathbb{Z} / p$-component in the homotopy group $\pi_{(2p-2)n+1}(S^3)$. As a corollary, it follows that, for $n \geq 2$, the homotopy groups $\pi_n(S^2)$ are non-zero.
DOI : 10.4310/HHA.2016.v18.n2.a18
Classification : 55Q40, 55T15
Keywords: homotopy group, Lambda algebra, Toda element
@article{HHA_2016_18_2_a17,
     author = {Sergei O. Ivanov and Roman Mikhailov and Jie Wu},
     title = {On nontriviality of certain homotopy groups of spheres},
     journal = {Homology, homotopy, and applications},
     pages = {337--344},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2016},
     doi = {10.4310/HHA.2016.v18.n2.a18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a18/}
}
TY  - JOUR
AU  - Sergei O. Ivanov
AU  - Roman Mikhailov
AU  - Jie Wu
TI  - On nontriviality of certain homotopy groups of spheres
JO  - Homology, homotopy, and applications
PY  - 2016
SP  - 337
EP  - 344
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a18/
DO  - 10.4310/HHA.2016.v18.n2.a18
LA  - en
ID  - HHA_2016_18_2_a17
ER  - 
%0 Journal Article
%A Sergei O. Ivanov
%A Roman Mikhailov
%A Jie Wu
%T On nontriviality of certain homotopy groups of spheres
%J Homology, homotopy, and applications
%D 2016
%P 337-344
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a18/
%R 10.4310/HHA.2016.v18.n2.a18
%G en
%F HHA_2016_18_2_a17
Sergei O. Ivanov; Roman Mikhailov; Jie Wu. On nontriviality of certain homotopy groups of spheres. Homology, homotopy, and applications, Tome 18 (2016) no. 2, pp. 337-344. doi : 10.4310/HHA.2016.v18.n2.a18. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a18/

Cité par Sources :