Motivic and derived motivic Hirzebruch classes
Homology, homotopy, and applications, Tome 18 (2016) no. 2, pp. 283-301.

Voir la notice de l'article provenant de la source International Press of Boston

In this paper we give a formula for the Hirzebruch $\chi_y$-genus $\chi_y(X)$ and similarly for the motivic Hirzebruch class $T_{y*}(X)$ for possibly singular varieties $X$, using the Vandermonde matrix. Motivated by the notion of secondary Euler characteristic and higher Euler characteristic, we consider a similar notion for the motivic Hirzebruch class, which we call a derived motivic Hirzebruch class.
DOI : 10.4310/HHA.2016.v18.n2.a16
Classification : 14C17, 14C40, 14F25, 14F45, 14Q15, 32S35
Keywords: higher Euler characteristic, arithmetic genus, signature, Hirzebruch genus, homology, Chern class, Todd class, $L$-class, motivic Hirzebruch class
@article{HHA_2016_18_2_a15,
     author = {Jean-Paul Brasselet and J\"org Sch\"urmann and Shoji Yokura},
     title = {Motivic and derived motivic {Hirzebruch} classes},
     journal = {Homology, homotopy, and applications},
     pages = {283--301},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2016},
     doi = {10.4310/HHA.2016.v18.n2.a16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a16/}
}
TY  - JOUR
AU  - Jean-Paul Brasselet
AU  - Jörg Schürmann
AU  - Shoji Yokura
TI  - Motivic and derived motivic Hirzebruch classes
JO  - Homology, homotopy, and applications
PY  - 2016
SP  - 283
EP  - 301
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a16/
DO  - 10.4310/HHA.2016.v18.n2.a16
LA  - en
ID  - HHA_2016_18_2_a15
ER  - 
%0 Journal Article
%A Jean-Paul Brasselet
%A Jörg Schürmann
%A Shoji Yokura
%T Motivic and derived motivic Hirzebruch classes
%J Homology, homotopy, and applications
%D 2016
%P 283-301
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a16/
%R 10.4310/HHA.2016.v18.n2.a16
%G en
%F HHA_2016_18_2_a15
Jean-Paul Brasselet; Jörg Schürmann; Shoji Yokura. Motivic and derived motivic Hirzebruch classes. Homology, homotopy, and applications, Tome 18 (2016) no. 2, pp. 283-301. doi : 10.4310/HHA.2016.v18.n2.a16. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a16/

Cité par Sources :