$PD_4$-complexes: constructions, cobordisms and signatures
Homology, homotopy, and applications, Tome 18 (2016) no. 2, pp. 267-281.

Voir la notice de l'article provenant de la source International Press of Boston

The oriented topological cobordism group $\Omega_4 (P)$ of an oriented $\operatorname{PD}_4$-complex $P$ is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$. The invariants of an element {$\{ f \colon X \to P \} \in \Omega_4 (P)$} are the signature of $X$ and the degree of $f$. We prove an analogous result for the Poincaré duality cobordism group $\Omega_{4}^{\operatorname{PD}} (P)$: If $\pi_1 (P)$ does not contain nontrivial elements of order $2$, then $\Omega_{4}^{\operatorname{PD}} (P)$ is isomorphic to $L^{0} (\Lambda) \oplus \mathbb{Z}$, where $L^{0} (\Lambda)$ is the Witt group of non-degenerated hermitian forms on finitely generated stably free $\Lambda$-modules. The component of an element $\{ f \colon X \to P \} \in \Omega_{4}^{\operatorname{PD}} (P)$ in $L^{0} (\Lambda)$ is related to the symmetric signature of $X$. Then we construct explicitly $\operatorname{PD}_4$-complexes, define the well-known map $L_4 (\pi_1 (P)) \to \Omega_{4}^{\operatorname{PD}} (P)$, and characterize the image of the map $\Omega_{4}^{\operatorname{PD}} (P) \to \Omega_{4}^{N} (P)$. The results are summarized in Theorems 1.1 and 1.2 stated in the introduction.
DOI : 10.4310/HHA.2016.v18.n2.a15
Classification : 57N65, 57Q10, 57R67
Keywords: Poincaré duality complex, signature, cobordism group, surgery sequence, Witt group, homotopy type, Whitehead quadratic group, spectral sequence, obstruction theory, homology with local coefficients, total surgery obstruction
@article{HHA_2016_18_2_a14,
     author = {Alberto Cavicchioli and Friedrich Hegenbarth and Fulvia Spaggiari},
     title = {$PD_4$-complexes: constructions, cobordisms and signatures},
     journal = {Homology, homotopy, and applications},
     pages = {267--281},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2016},
     doi = {10.4310/HHA.2016.v18.n2.a15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a15/}
}
TY  - JOUR
AU  - Alberto Cavicchioli
AU  - Friedrich Hegenbarth
AU  - Fulvia Spaggiari
TI  - $PD_4$-complexes: constructions, cobordisms and signatures
JO  - Homology, homotopy, and applications
PY  - 2016
SP  - 267
EP  - 281
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a15/
DO  - 10.4310/HHA.2016.v18.n2.a15
LA  - en
ID  - HHA_2016_18_2_a14
ER  - 
%0 Journal Article
%A Alberto Cavicchioli
%A Friedrich Hegenbarth
%A Fulvia Spaggiari
%T $PD_4$-complexes: constructions, cobordisms and signatures
%J Homology, homotopy, and applications
%D 2016
%P 267-281
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a15/
%R 10.4310/HHA.2016.v18.n2.a15
%G en
%F HHA_2016_18_2_a14
Alberto Cavicchioli; Friedrich Hegenbarth; Fulvia Spaggiari. $PD_4$-complexes: constructions, cobordisms and signatures. Homology, homotopy, and applications, Tome 18 (2016) no. 2, pp. 267-281. doi : 10.4310/HHA.2016.v18.n2.a15. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a15/

Cité par Sources :