The observable structure of persistence modules
Homology, homotopy, and applications, Tome 18 (2016) no. 2, pp. 247-265.

Voir la notice de l'article provenant de la source International Press of Boston

In persistent topology, q-tame modules appear as a natural and large class of persistence modules indexed over the real line for which a persistence diagram is definable. However, unlike persistence modules indexed over a totally ordered finite set or the natural numbers, such diagrams do not provide a complete invariant of q-tame modules. The purpose of this paper is to show that the category of persistence modules can be adjusted to overcome this issue. We introduce the observable category of persistence modules: a localization of the usual category, in which the classical properties of q-tame modules still hold but where the persistence diagram is a complete isomorphism invariant and all q-tame modules admit an interval decomposition.
DOI : 10.4310/HHA.2016.v18.n2.a14
Classification : 55U99
Keywords: persistence module, persistent homology
@article{HHA_2016_18_2_a13,
     author = {Fr\'ed\'eric Chazal and William Crawley-Boevey and Vin de Silva},
     title = {The observable structure of persistence modules},
     journal = {Homology, homotopy, and applications},
     pages = {247--265},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2016},
     doi = {10.4310/HHA.2016.v18.n2.a14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a14/}
}
TY  - JOUR
AU  - Frédéric Chazal
AU  - William Crawley-Boevey
AU  - Vin de Silva
TI  - The observable structure of persistence modules
JO  - Homology, homotopy, and applications
PY  - 2016
SP  - 247
EP  - 265
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a14/
DO  - 10.4310/HHA.2016.v18.n2.a14
LA  - en
ID  - HHA_2016_18_2_a13
ER  - 
%0 Journal Article
%A Frédéric Chazal
%A William Crawley-Boevey
%A Vin de Silva
%T The observable structure of persistence modules
%J Homology, homotopy, and applications
%D 2016
%P 247-265
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a14/
%R 10.4310/HHA.2016.v18.n2.a14
%G en
%F HHA_2016_18_2_a13
Frédéric Chazal; William Crawley-Boevey; Vin de Silva. The observable structure of persistence modules. Homology, homotopy, and applications, Tome 18 (2016) no. 2, pp. 247-265. doi : 10.4310/HHA.2016.v18.n2.a14. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a14/

Cité par Sources :