On equivariant homotopy theory for model categories
Homology, homotopy, and applications, Tome 18 (2016) no. 2, pp. 183-208.

Voir la notice de l'article provenant de la source International Press of Boston

We introduce and compare two approaches to equivariant homotopy theory in a topological or ordinary Quillen model category. For the topological model category of spaces, we generalize Piacenza’s result that the categories of topological presheaves indexed by the orbit category of a fixed topological group $G$ and the category of $G$-spaces can be endowed with Quillen equivalent model category structures.We prove an analogous result for any cofibrantly generated model category and discrete group $G$, under certain conditions on the fixed point functors of the subgroups of $G$. These conditions hold in many examples, though not in the category of chain complexes, where we nevertheless establish and generalize to collections an equivariant Whitehead Theorem à la Kropholler and Wall for the normalized chain complexes of simplicial $G$-sets.
DOI : 10.4310/HHA.2016.v18.n2.a10
Classification : 18G55, 20J99, 55P91
Keywords: equivariant homotopy theory, model category, orbit category
@article{HHA_2016_18_2_a9,
     author = {Marc Stephan},
     title = {On equivariant homotopy theory for model categories},
     journal = {Homology, homotopy, and applications},
     pages = {183--208},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2016},
     doi = {10.4310/HHA.2016.v18.n2.a10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a10/}
}
TY  - JOUR
AU  - Marc Stephan
TI  - On equivariant homotopy theory for model categories
JO  - Homology, homotopy, and applications
PY  - 2016
SP  - 183
EP  - 208
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a10/
DO  - 10.4310/HHA.2016.v18.n2.a10
LA  - en
ID  - HHA_2016_18_2_a9
ER  - 
%0 Journal Article
%A Marc Stephan
%T On equivariant homotopy theory for model categories
%J Homology, homotopy, and applications
%D 2016
%P 183-208
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a10/
%R 10.4310/HHA.2016.v18.n2.a10
%G en
%F HHA_2016_18_2_a9
Marc Stephan. On equivariant homotopy theory for model categories. Homology, homotopy, and applications, Tome 18 (2016) no. 2, pp. 183-208. doi : 10.4310/HHA.2016.v18.n2.a10. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a10/

Cité par Sources :