The homology of $\mathrm{tmf}$
Homology, homotopy, and applications, Tome 18 (2016) no. 2, pp. 1-29.

Voir la notice de l'article provenant de la source International Press of Boston

We compute the mod $2$ homology of the spectrum $\mathrm{tmf}$ of topological modular forms by proving a $2$-local equivalence $\mathrm{tmf} \wedge DA(1) \simeq \mathrm{tmf}_1(3) \simeq BP \left \langle 2 \right \rangle$, where $DA(1)$ is an eight cell complex whose cohomology doubles the subalgebra $\mathcal{A}(1)$ of the Steenrod algebra generated by $\mathrm{Sq}^1$ and $\mathrm{Sq}^2$. To do so, we give, using the language of stacks, a modular description of the elliptic homology of $DA(1)$ via level three structures. We briefly discuss analogs at odd primes and recover the stack-theoretic description of the Adams–Novikov spectral sequence for $\mathrm{tmf}$.
DOI : 10.4310/HHA.2016.v18.n2.a1
Classification : 55P42, 55P43
Keywords: topological modular form, algebraic stack, Steenrod algebra
@article{HHA_2016_18_2_a0,
     author = {Akhil Mathew},
     title = {The homology of $\mathrm{tmf}$},
     journal = {Homology, homotopy, and applications},
     pages = {1--29},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2016},
     doi = {10.4310/HHA.2016.v18.n2.a1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a1/}
}
TY  - JOUR
AU  - Akhil Mathew
TI  - The homology of $\mathrm{tmf}$
JO  - Homology, homotopy, and applications
PY  - 2016
SP  - 1
EP  - 29
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a1/
DO  - 10.4310/HHA.2016.v18.n2.a1
LA  - en
ID  - HHA_2016_18_2_a0
ER  - 
%0 Journal Article
%A Akhil Mathew
%T The homology of $\mathrm{tmf}$
%J Homology, homotopy, and applications
%D 2016
%P 1-29
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a1/
%R 10.4310/HHA.2016.v18.n2.a1
%G en
%F HHA_2016_18_2_a0
Akhil Mathew. The homology of $\mathrm{tmf}$. Homology, homotopy, and applications, Tome 18 (2016) no. 2, pp. 1-29. doi : 10.4310/HHA.2016.v18.n2.a1. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n2.a1/

Cité par Sources :