Monoids and pointed $S$-protomodular categories
Homology, homotopy, and applications, Tome 18 (2016) no. 1, pp. 151-172.

Voir la notice de l'article provenant de la source International Press of Boston

We investigate the notion of pointed $S$-protomodular category, with respect to a suitable class $S$ of points, and we prove that these categories satisfy, relatively to the class $S$, many partial aspects of the properties of Mal’tsev and protomodular categories, like the split short five lemma for $S$-split exact sequences, or the fact that a reflexive $S$-relation is transitive. The main examples of $S$-protomodular categories are the category of monoids and, more generally, any category of monoids with operations, where the class $S$ is the class of Schreier points.
DOI : 10.4310/HHA.2016.v18.n1.a9
Classification : 03C05, 08C05, 18D35, 18G50
Keywords: fibration of points, Mal’tsev and protomodular categories, monoid with operations, Schreier split epimorphism, pointed $S$-protomodular category
@article{HHA_2016_18_1_a8,
     author = {Dominique Bourn and Nelson Martins-Ferreira and Andrea Montoli and Manuela Sobral},
     title = {Monoids and pointed $S$-protomodular categories},
     journal = {Homology, homotopy, and applications},
     pages = {151--172},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2016},
     doi = {10.4310/HHA.2016.v18.n1.a9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a9/}
}
TY  - JOUR
AU  - Dominique Bourn
AU  - Nelson Martins-Ferreira
AU  - Andrea Montoli
AU  - Manuela Sobral
TI  - Monoids and pointed $S$-protomodular categories
JO  - Homology, homotopy, and applications
PY  - 2016
SP  - 151
EP  - 172
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a9/
DO  - 10.4310/HHA.2016.v18.n1.a9
LA  - en
ID  - HHA_2016_18_1_a8
ER  - 
%0 Journal Article
%A Dominique Bourn
%A Nelson Martins-Ferreira
%A Andrea Montoli
%A Manuela Sobral
%T Monoids and pointed $S$-protomodular categories
%J Homology, homotopy, and applications
%D 2016
%P 151-172
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a9/
%R 10.4310/HHA.2016.v18.n1.a9
%G en
%F HHA_2016_18_1_a8
Dominique Bourn; Nelson Martins-Ferreira; Andrea Montoli; Manuela Sobral. Monoids and pointed $S$-protomodular categories. Homology, homotopy, and applications, Tome 18 (2016) no. 1, pp. 151-172. doi : 10.4310/HHA.2016.v18.n1.a9. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a9/

Cité par Sources :