Bimodules and natural transformations for enriched $\infty$-categories
Homology, homotopy, and applications, Tome 18 (2016) no. 1, pp. 71-98.

Voir la notice de l'article provenant de la source International Press of Boston

We introduce a notion of bimodule in the setting of enriched $\infty$-categories, and use this to construct a double $\infty$-category of enriched $\infty$-categories where the two kinds of 1-morphisms are functors and bimodules. We then consider a natural definition of natural transformations in this context, and show that in the underlying $(\infty,2)$-category of enriched $\infty$-categories with functors as 1-morphisms the 2-morphisms are given by natural transformations.
DOI : 10.4310/HHA.2016.v18.n1.a5
Classification : 18D05, 18D20, 55U40
Keywords: enriched $\infty$-category, bimodule
@article{HHA_2016_18_1_a4,
     author = {Rune Haugseng},
     title = {Bimodules and natural transformations for enriched $\infty$-categories},
     journal = {Homology, homotopy, and applications},
     pages = {71--98},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2016},
     doi = {10.4310/HHA.2016.v18.n1.a5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a5/}
}
TY  - JOUR
AU  - Rune Haugseng
TI  - Bimodules and natural transformations for enriched $\infty$-categories
JO  - Homology, homotopy, and applications
PY  - 2016
SP  - 71
EP  - 98
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a5/
DO  - 10.4310/HHA.2016.v18.n1.a5
LA  - en
ID  - HHA_2016_18_1_a4
ER  - 
%0 Journal Article
%A Rune Haugseng
%T Bimodules and natural transformations for enriched $\infty$-categories
%J Homology, homotopy, and applications
%D 2016
%P 71-98
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a5/
%R 10.4310/HHA.2016.v18.n1.a5
%G en
%F HHA_2016_18_1_a4
Rune Haugseng. Bimodules and natural transformations for enriched $\infty$-categories. Homology, homotopy, and applications, Tome 18 (2016) no. 1, pp. 71-98. doi : 10.4310/HHA.2016.v18.n1.a5. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a5/

Cité par Sources :