Voir la notice de l'article provenant de la source International Press of Boston
@article{HHA_2016_18_1_a4, author = {Rune Haugseng}, title = {Bimodules and natural transformations for enriched $\infty$-categories}, journal = {Homology, homotopy, and applications}, pages = {71--98}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2016}, doi = {10.4310/HHA.2016.v18.n1.a5}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a5/} }
TY - JOUR AU - Rune Haugseng TI - Bimodules and natural transformations for enriched $\infty$-categories JO - Homology, homotopy, and applications PY - 2016 SP - 71 EP - 98 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a5/ DO - 10.4310/HHA.2016.v18.n1.a5 LA - en ID - HHA_2016_18_1_a4 ER -
%0 Journal Article %A Rune Haugseng %T Bimodules and natural transformations for enriched $\infty$-categories %J Homology, homotopy, and applications %D 2016 %P 71-98 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a5/ %R 10.4310/HHA.2016.v18.n1.a5 %G en %F HHA_2016_18_1_a4
Rune Haugseng. Bimodules and natural transformations for enriched $\infty$-categories. Homology, homotopy, and applications, Tome 18 (2016) no. 1, pp. 71-98. doi : 10.4310/HHA.2016.v18.n1.a5. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a5/
Cité par Sources :