Equivariant $K$-theory of central extensions and twisted equivariant $K$-theory: $SL_{3}\mathbb{Z}$ and $St_{3}{\mathbb{Z}}$
Homology, homotopy, and applications, Tome 18 (2016) no. 1, pp. 49-70.

Voir la notice de l'article provenant de la source International Press of Boston

We compare twisted equivariant $K$-theory of $SL_{3}{\mathbb{Z}}$ with untwisted equivariant $K$-theory of a central extension $St_3{\mathbb{Z}}$. We compute all twisted equivariant $K$-theory groups of $SL_{3}{\mathbb{Z}}$, and compare them with previous work on the equivariant $K$-theory of $BSt_3{\mathbb{Z}}$ by Tezuka and Yagita. Using a universal coefficient theorem by the authors, the computations explained here give the domain of Baum–Connes assembly maps landing on the topological $K$-theory of twisted group $C^*$-algebras related to $SL_{3}{\mathbb{Z}}$, for which a version of $KK$-theoretic duality studied by Echterhoff, Emerson, and Kim is verified.
DOI : 10.4310/HHA.2016.v18.n1.a4
Classification : 19K33, 19L47, 19L64
Keywords: twisted equivariant $K$-theory, Bredon cohomology, Baum–Connes conjecture with coefficients, twisted group $C^*$-algebra, $KK$-theoretic duality
@article{HHA_2016_18_1_a3,
     author = {No\'e B\'arcenas and Mario Vel\'asquez},
     title = {Equivariant $K$-theory of central extensions and twisted equivariant $K$-theory: $SL_{3}\mathbb{Z}$ and $St_{3}{\mathbb{Z}}$},
     journal = {Homology, homotopy, and applications},
     pages = {49--70},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2016},
     doi = {10.4310/HHA.2016.v18.n1.a4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a4/}
}
TY  - JOUR
AU  - Noé Bárcenas
AU  - Mario Velásquez
TI  - Equivariant $K$-theory of central extensions and twisted equivariant $K$-theory: $SL_{3}\mathbb{Z}$ and $St_{3}{\mathbb{Z}}$
JO  - Homology, homotopy, and applications
PY  - 2016
SP  - 49
EP  - 70
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a4/
DO  - 10.4310/HHA.2016.v18.n1.a4
LA  - en
ID  - HHA_2016_18_1_a3
ER  - 
%0 Journal Article
%A Noé Bárcenas
%A Mario Velásquez
%T Equivariant $K$-theory of central extensions and twisted equivariant $K$-theory: $SL_{3}\mathbb{Z}$ and $St_{3}{\mathbb{Z}}$
%J Homology, homotopy, and applications
%D 2016
%P 49-70
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a4/
%R 10.4310/HHA.2016.v18.n1.a4
%G en
%F HHA_2016_18_1_a3
Noé Bárcenas; Mario Velásquez. Equivariant $K$-theory of central extensions and twisted equivariant $K$-theory: $SL_{3}\mathbb{Z}$ and $St_{3}{\mathbb{Z}}$. Homology, homotopy, and applications, Tome 18 (2016) no. 1, pp. 49-70. doi : 10.4310/HHA.2016.v18.n1.a4. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a4/

Cité par Sources :