Voir la notice de l'article provenant de la source International Press of Boston
@article{HHA_2016_18_1_a3, author = {No\'e B\'arcenas and Mario Vel\'asquez}, title = {Equivariant $K$-theory of central extensions and twisted equivariant $K$-theory: $SL_{3}\mathbb{Z}$ and $St_{3}{\mathbb{Z}}$}, journal = {Homology, homotopy, and applications}, pages = {49--70}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2016}, doi = {10.4310/HHA.2016.v18.n1.a4}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a4/} }
TY - JOUR AU - Noé Bárcenas AU - Mario Velásquez TI - Equivariant $K$-theory of central extensions and twisted equivariant $K$-theory: $SL_{3}\mathbb{Z}$ and $St_{3}{\mathbb{Z}}$ JO - Homology, homotopy, and applications PY - 2016 SP - 49 EP - 70 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a4/ DO - 10.4310/HHA.2016.v18.n1.a4 LA - en ID - HHA_2016_18_1_a3 ER -
%0 Journal Article %A Noé Bárcenas %A Mario Velásquez %T Equivariant $K$-theory of central extensions and twisted equivariant $K$-theory: $SL_{3}\mathbb{Z}$ and $St_{3}{\mathbb{Z}}$ %J Homology, homotopy, and applications %D 2016 %P 49-70 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a4/ %R 10.4310/HHA.2016.v18.n1.a4 %G en %F HHA_2016_18_1_a3
Noé Bárcenas; Mario Velásquez. Equivariant $K$-theory of central extensions and twisted equivariant $K$-theory: $SL_{3}\mathbb{Z}$ and $St_{3}{\mathbb{Z}}$. Homology, homotopy, and applications, Tome 18 (2016) no. 1, pp. 49-70. doi : 10.4310/HHA.2016.v18.n1.a4. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a4/
Cité par Sources :