Dwyer–Kan localization revisited
Homology, homotopy, and applications, Tome 18 (2016) no. 1, pp. 27-48.

Voir la notice de l'article provenant de la source International Press of Boston

A version of Dwyer–Kan localization in the context of $\infty$-categories and simplicial categories is presented. Some results of the classical papers—“Simplicial localizations of categories” [J. Pure Appl. Algebra 17 (1980), no. 3, 267–284], “Calculating simplicial localizations” [J. Pure Appl. Algebra 18 (1980), no. 1, 17–35], and “Function complexes in homotopical algebra” [Topology 19 (1980), no. 4, 427–440]—are reproven and generalized. We prove that a Quillen pair of model categories gives rise to an adjoint pair of their DK localizations (considered as $\infty$-categories). We study families of $\infty$-categories and present a result on localization of a family of $\infty$-categories. This is applied to localization of symmetric monoidal $\infty$-categories where we were able to get only partial results.
DOI : 10.4310/HHA.2016.v18.n1.a3
Classification : 18D20, 55U35
Keywords: DK localization, infinity-category
@article{HHA_2016_18_1_a2,
     author = {Vladimir Hinich},
     title = {Dwyer{\textendash}Kan localization revisited},
     journal = {Homology, homotopy, and applications},
     pages = {27--48},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2016},
     doi = {10.4310/HHA.2016.v18.n1.a3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a3/}
}
TY  - JOUR
AU  - Vladimir Hinich
TI  - Dwyer–Kan localization revisited
JO  - Homology, homotopy, and applications
PY  - 2016
SP  - 27
EP  - 48
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a3/
DO  - 10.4310/HHA.2016.v18.n1.a3
LA  - en
ID  - HHA_2016_18_1_a2
ER  - 
%0 Journal Article
%A Vladimir Hinich
%T Dwyer–Kan localization revisited
%J Homology, homotopy, and applications
%D 2016
%P 27-48
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a3/
%R 10.4310/HHA.2016.v18.n1.a3
%G en
%F HHA_2016_18_1_a2
Vladimir Hinich. Dwyer–Kan localization revisited. Homology, homotopy, and applications, Tome 18 (2016) no. 1, pp. 27-48. doi : 10.4310/HHA.2016.v18.n1.a3. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a3/

Cité par Sources :