The $K$-theory of endomorphisms of spaces
Homology, homotopy, and applications, Tome 18 (2016) no. 1, pp. 325-338.

Voir la notice de l'article provenant de la source International Press of Boston

We prove a non-linear version of a theorem of Grayson which is an analogue of the Fundamental Theorem of Algebraic $K$-theory and identify the $K$-theory of the endomorphism category over a space $X$ in terms of reduced $K$-theory of a certain localisation of the category of $\mathbb{N}$-spaces over $X$. In particular, we generalise the result of Klein and Williams describing the nil-terms of $A$-theory in terms of $K$-theory of nilpotent endomorphisms.
DOI : 10.4310/HHA.2016.v18.n1.a17
Classification : 19D10, 19D35, 55N15
Keywords: $K$-theory of endomorphisms, algebraic $K$-theory of spaces, non-linear projective line.
@article{HHA_2016_18_1_a16,
     author = {Filipp Levikov},
     title = {The $K$-theory of endomorphisms of spaces},
     journal = {Homology, homotopy, and applications},
     pages = {325--338},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2016},
     doi = {10.4310/HHA.2016.v18.n1.a17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a17/}
}
TY  - JOUR
AU  - Filipp Levikov
TI  - The $K$-theory of endomorphisms of spaces
JO  - Homology, homotopy, and applications
PY  - 2016
SP  - 325
EP  - 338
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a17/
DO  - 10.4310/HHA.2016.v18.n1.a17
LA  - en
ID  - HHA_2016_18_1_a16
ER  - 
%0 Journal Article
%A Filipp Levikov
%T The $K$-theory of endomorphisms of spaces
%J Homology, homotopy, and applications
%D 2016
%P 325-338
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a17/
%R 10.4310/HHA.2016.v18.n1.a17
%G en
%F HHA_2016_18_1_a16
Filipp Levikov. The $K$-theory of endomorphisms of spaces. Homology, homotopy, and applications, Tome 18 (2016) no. 1, pp. 325-338. doi : 10.4310/HHA.2016.v18.n1.a17. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a17/

Cité par Sources :