Equivariant $\Gamma$-spaces
Homology, homotopy, and applications, Tome 18 (2016) no. 1, pp. 295-324.

Voir la notice de l'article provenant de la source International Press of Boston

The aim of this note is to provide a comprehensive treatment of the homotopy theory of $\Gamma \textrm{-}G$-spaces for $G$ a finite group. We introduce two level and stable model structures on $\Gamma \textrm{-}G$-spaces and exhibit Quillen adjunctions to $G$-symmetric spectra with respect to a flat level and a stable flat model structure, respectively. Then we give a proof that $\Gamma \textrm{-}G$-spaces model connective equivariant stable homotopy theory along the lines of the proof in the non-equivariant setting given by Bousfield and Friedlander. Furthermore, we study the smash product of $\Gamma \textrm{-}G$-spaces and show that the functor from $\Gamma \textrm{-}G$-spaces to G-symmetric spectra commutes with the derived smash product. Finally, we show that there is a good notion of geometric fixed points for $\Gamma \textrm{-}G$-spaces.
DOI : 10.4310/HHA.2016.v18.n1.a16
Classification : 55P47, 55P91
Keywords: equivariant homotopy theory, infinite loop spaces
@article{HHA_2016_18_1_a15,
     author = {Dominik Ostermayr},
     title = {Equivariant $\Gamma$-spaces},
     journal = {Homology, homotopy, and applications},
     pages = {295--324},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2016},
     doi = {10.4310/HHA.2016.v18.n1.a16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a16/}
}
TY  - JOUR
AU  - Dominik Ostermayr
TI  - Equivariant $\Gamma$-spaces
JO  - Homology, homotopy, and applications
PY  - 2016
SP  - 295
EP  - 324
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a16/
DO  - 10.4310/HHA.2016.v18.n1.a16
LA  - en
ID  - HHA_2016_18_1_a15
ER  - 
%0 Journal Article
%A Dominik Ostermayr
%T Equivariant $\Gamma$-spaces
%J Homology, homotopy, and applications
%D 2016
%P 295-324
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a16/
%R 10.4310/HHA.2016.v18.n1.a16
%G en
%F HHA_2016_18_1_a15
Dominik Ostermayr. Equivariant $\Gamma$-spaces. Homology, homotopy, and applications, Tome 18 (2016) no. 1, pp. 295-324. doi : 10.4310/HHA.2016.v18.n1.a16. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a16/

Cité par Sources :