An alternate approach to the Lie bracket on Hochschild cohomology
Homology, homotopy, and applications, Tome 18 (2016) no. 1, pp. 265-285.

Voir la notice de l'article provenant de la source International Press of Boston

We define Gerstenhaber’s graded Lie bracket directly on complexes other than the bar complex, under some conditions, resulting in a practical technique for explicit computations. The Koszul complex of a Koszul algebra in particular satisfies our conditions. As examples we recover the Schouten–Nijenhuis bracket for a polynomial ring and the Gerstenhaber bracket for a group algebra of a cyclic group of prime order.
DOI : 10.4310/HHA.2016.v18.n1.a14
Classification : 16E40, 16S37, 18G10
Keywords: Hochschild cohomology, Gerstenhaber bracket, Koszul algebra
@article{HHA_2016_18_1_a13,
     author = {Cris Negron and Sarah Witherspoon},
     title = {An alternate approach to the {Lie} bracket on {Hochschild} cohomology},
     journal = {Homology, homotopy, and applications},
     pages = {265--285},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2016},
     doi = {10.4310/HHA.2016.v18.n1.a14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a14/}
}
TY  - JOUR
AU  - Cris Negron
AU  - Sarah Witherspoon
TI  - An alternate approach to the Lie bracket on Hochschild cohomology
JO  - Homology, homotopy, and applications
PY  - 2016
SP  - 265
EP  - 285
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a14/
DO  - 10.4310/HHA.2016.v18.n1.a14
LA  - en
ID  - HHA_2016_18_1_a13
ER  - 
%0 Journal Article
%A Cris Negron
%A Sarah Witherspoon
%T An alternate approach to the Lie bracket on Hochschild cohomology
%J Homology, homotopy, and applications
%D 2016
%P 265-285
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a14/
%R 10.4310/HHA.2016.v18.n1.a14
%G en
%F HHA_2016_18_1_a13
Cris Negron; Sarah Witherspoon. An alternate approach to the Lie bracket on Hochschild cohomology. Homology, homotopy, and applications, Tome 18 (2016) no. 1, pp. 265-285. doi : 10.4310/HHA.2016.v18.n1.a14. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a14/

Cité par Sources :