Models for mock homotopy categories of projectives
Homology, homotopy, and applications, Tome 18 (2016) no. 1, pp. 247-263.

Voir la notice de l'article provenant de la source International Press of Boston

Let $R$ be a ring and $\mathrm{Ch}(R)$ the category of chain complexes of $R$-modules. We put an abelian model structure on $\mathrm{Ch}(R)$ whose homotopy category is equivalent to $K(Proj)$, the homotopy category of all complexes of projectives. However, the cofibrant objects are not complexes of projectives, but rather all complexes of flat modules. The trivial objects are what Positselski calls contraacyclic complexes and so the homotopy category coincides with his contraderived category. We in fact construct this model on the category of chain complexes of quasi-coherent sheaves on any scheme $X$ admitting a flat generator. In this case the homotopy category recovers what Murfet calls the mock homotopy category of projectives. In the same way we construct a model for the (mock) projective stable derived category, and we use model category methods to recover the recollement of Murfet. Finally, we consider generalizations by replacing the flat cotorsion pair with other complete hereditary cotorsion pairs in Grothendieck categories.
DOI : 10.4310/HHA.2016.v18.n1.a13
Classification : 18E35, 18G25, 55U35
Keywords: abelian model structure, chain complex of projectives, triangulated category, quasi-coherent sheaf, recollement
@article{HHA_2016_18_1_a12,
     author = {James Gillespie},
     title = {Models for mock homotopy categories of projectives},
     journal = {Homology, homotopy, and applications},
     pages = {247--263},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2016},
     doi = {10.4310/HHA.2016.v18.n1.a13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a13/}
}
TY  - JOUR
AU  - James Gillespie
TI  - Models for mock homotopy categories of projectives
JO  - Homology, homotopy, and applications
PY  - 2016
SP  - 247
EP  - 263
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a13/
DO  - 10.4310/HHA.2016.v18.n1.a13
LA  - en
ID  - HHA_2016_18_1_a12
ER  - 
%0 Journal Article
%A James Gillespie
%T Models for mock homotopy categories of projectives
%J Homology, homotopy, and applications
%D 2016
%P 247-263
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a13/
%R 10.4310/HHA.2016.v18.n1.a13
%G en
%F HHA_2016_18_1_a12
James Gillespie. Models for mock homotopy categories of projectives. Homology, homotopy, and applications, Tome 18 (2016) no. 1, pp. 247-263. doi : 10.4310/HHA.2016.v18.n1.a13. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a13/

Cité par Sources :