Higher Euler characteristics: Variations on a theme of Euler
Homology, homotopy, and applications, Tome 18 (2016) no. 1, pp. 231-246.

Voir la notice de l'article provenant de la source International Press of Boston

We provide a natural interpretation of the secondary Euler characteristic and introduce higher Euler characteristics. For a compact oriented manifold of odd dimension, the secondary Euler characteristic recovers the Kervaire semi-characteristic. We prove basic properties of the higher invariants and illustrate their use. We also introduce motivic variants.
DOI : 10.4310/HHA.2016.v18.n1.a12
Classification : 13D15, 18G35, 55M99
Keywords: Euler characteristic, abelian category, cohomological invariant
@article{HHA_2016_18_1_a11,
     author = {Niranjan Ramachandran},
     title = {Higher {Euler} characteristics: {Variations} on a theme of {Euler}},
     journal = {Homology, homotopy, and applications},
     pages = {231--246},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2016},
     doi = {10.4310/HHA.2016.v18.n1.a12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a12/}
}
TY  - JOUR
AU  - Niranjan Ramachandran
TI  - Higher Euler characteristics: Variations on a theme of Euler
JO  - Homology, homotopy, and applications
PY  - 2016
SP  - 231
EP  - 246
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a12/
DO  - 10.4310/HHA.2016.v18.n1.a12
LA  - en
ID  - HHA_2016_18_1_a11
ER  - 
%0 Journal Article
%A Niranjan Ramachandran
%T Higher Euler characteristics: Variations on a theme of Euler
%J Homology, homotopy, and applications
%D 2016
%P 231-246
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a12/
%R 10.4310/HHA.2016.v18.n1.a12
%G en
%F HHA_2016_18_1_a11
Niranjan Ramachandran. Higher Euler characteristics: Variations on a theme of Euler. Homology, homotopy, and applications, Tome 18 (2016) no. 1, pp. 231-246. doi : 10.4310/HHA.2016.v18.n1.a12. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2016.v18.n1.a12/

Cité par Sources :