Equivariant fixed-point theory
Homology, homotopy, and applications, Tome 17 (2015) no. 2, pp. 161-190.

Voir la notice de l'article provenant de la source International Press of Boston

We reexamine equivariant generalizations of the Lefschetz number and Reidemeister trace using categorical traces. This gives simple, conceptual descriptions of the invariants as well as direct comparisons to previously defined generalizations. These comparisons are illuminating applications of the additivity and multiplicativity of the categorical trace.
DOI : 10.4310/HHA.2015.v17.n2.a9
Classification : 18D05, 55M20, 55P25, 55P91
Keywords: Lefschetz number, Reidemeister trace, fixed point, equivariant homotopy
@article{HHA_2015_17_2_a8,
     author = {Kate Ponto},
     title = {Equivariant fixed-point theory},
     journal = {Homology, homotopy, and applications},
     pages = {161--190},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2015},
     doi = {10.4310/HHA.2015.v17.n2.a9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n2.a9/}
}
TY  - JOUR
AU  - Kate Ponto
TI  - Equivariant fixed-point theory
JO  - Homology, homotopy, and applications
PY  - 2015
SP  - 161
EP  - 190
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n2.a9/
DO  - 10.4310/HHA.2015.v17.n2.a9
LA  - en
ID  - HHA_2015_17_2_a8
ER  - 
%0 Journal Article
%A Kate Ponto
%T Equivariant fixed-point theory
%J Homology, homotopy, and applications
%D 2015
%P 161-190
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n2.a9/
%R 10.4310/HHA.2015.v17.n2.a9
%G en
%F HHA_2015_17_2_a8
Kate Ponto. Equivariant fixed-point theory. Homology, homotopy, and applications, Tome 17 (2015) no. 2, pp. 161-190. doi : 10.4310/HHA.2015.v17.n2.a9. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n2.a9/

Cité par Sources :