On homotopy categories of Gorenstein modules: Compact generation and dimensions
Homology, homotopy, and applications, Tome 17 (2015) no. 2, pp. 13-24.

Voir la notice de l'article provenant de la source International Press of Boston

Let $A$ be a virtually Gorenstein algebra of finite CM-type. We establish a duality between the subcategory of compact objects in the homotopy category of Gorenstein projective left $A$-modules and the bounded Gorenstein derived category of finitely generated right $A$-modules. Let $R$ be a two-sided noetherian ring such that the subcategory of Gorenstein flat modules $R\mbox{-}\mathcal{GF}$ is closed under direct products. We show that the inclusion $K(R\mbox{-}\mathcal{GF})\to K(R\mbox{-}{\rm Mod})$ of homotopy categories admits a right adjoint. We introduce the notion of Gorenstein representation dimension for an algebra of finite CM-type, and give a lower bound by the dimension of its bounded Gorenstein derived category.
DOI : 10.4310/HHA.2015.v17.n2.a2
Classification : 18G25
Keywords: Gorenstein projective module, Gorenstein flat module, compactly generated homotopy category, Gorenstein representation dimension
@article{HHA_2015_17_2_a1,
     author = {Nan Gao},
     title = {On homotopy categories of {Gorenstein} modules: {Compact} generation and dimensions},
     journal = {Homology, homotopy, and applications},
     pages = {13--24},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2015},
     doi = {10.4310/HHA.2015.v17.n2.a2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n2.a2/}
}
TY  - JOUR
AU  - Nan Gao
TI  - On homotopy categories of Gorenstein modules: Compact generation and dimensions
JO  - Homology, homotopy, and applications
PY  - 2015
SP  - 13
EP  - 24
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n2.a2/
DO  - 10.4310/HHA.2015.v17.n2.a2
LA  - en
ID  - HHA_2015_17_2_a1
ER  - 
%0 Journal Article
%A Nan Gao
%T On homotopy categories of Gorenstein modules: Compact generation and dimensions
%J Homology, homotopy, and applications
%D 2015
%P 13-24
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n2.a2/
%R 10.4310/HHA.2015.v17.n2.a2
%G en
%F HHA_2015_17_2_a1
Nan Gao. On homotopy categories of Gorenstein modules: Compact generation and dimensions. Homology, homotopy, and applications, Tome 17 (2015) no. 2, pp. 13-24. doi : 10.4310/HHA.2015.v17.n2.a2. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n2.a2/

Cité par Sources :