Lin–Wang type formula for the Haefliger invariant
Homology, homotopy, and applications, Tome 17 (2015) no. 2, pp. 317-341.

Voir la notice de l'article provenant de la source International Press of Boston

In this paper we study the Haefliger invariant for long embeddings $\mathbb{R}^{4k-1} \hookrightarrow \mathbb{R}^{6k}$ in terms of the self-intersections of their projections to $\mathbb{R}^{6k-1}$, under the condition that the projection is a generic long immersion $\mathbb{R}^{4k-1} \looparrowright \mathbb{R}^{6k-1}$. We define the notion of “crossing changes” of the embeddings at the self-intersections and describe the change of the isotopy classes under crossing changes using the linking numbers of the double point sets in $\mathbb{R}^{4k-1}$. This formula is a higher-dimensional analogue to that of X.-S. Lin and Z. Wang for the order $2$ invariant for classical knots. As a consequence, we show that the Haefliger invariant is of order $2$ in a similar sense to Birman and Lin. We also give an alternative proof for the result of M. Murai and K. Ohba concerning “unknotting numbers” of embeddings $\mathbb{R}^3 \hookrightarrow \mathbb{R}^6$. Our formula enables us to define an invariant for generic long immersions $\mathbb{R}^{4k-1} \looparrowright \mathbb{R}^{6k-1}$ which are liftable to embeddings $\mathbb{R}^{4k-1} \hookrightarrow \mathbb{R}^{6k}$. This invariant corresponds to V. Arnold’s plane curve invariant in Lin–Wang theory, but in general our invariant does not coincide with the order $1$ invariant of T. Ekholm.
DOI : 10.4310/HHA.2015.v17.n2.a15
Classification : 57Q45, 57R40, 57R42, 58D10, 81Q30
Keywords: space of embeddings, Haefliger invariant, configuration space integral, finite type invariant, generic immersion
@article{HHA_2015_17_2_a14,
     author = {Keiichi Sakai},
     title = {Lin{\textendash}Wang type formula for the {Haefliger} invariant},
     journal = {Homology, homotopy, and applications},
     pages = {317--341},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2015},
     doi = {10.4310/HHA.2015.v17.n2.a15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n2.a15/}
}
TY  - JOUR
AU  - Keiichi Sakai
TI  - Lin–Wang type formula for the Haefliger invariant
JO  - Homology, homotopy, and applications
PY  - 2015
SP  - 317
EP  - 341
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n2.a15/
DO  - 10.4310/HHA.2015.v17.n2.a15
LA  - en
ID  - HHA_2015_17_2_a14
ER  - 
%0 Journal Article
%A Keiichi Sakai
%T Lin–Wang type formula for the Haefliger invariant
%J Homology, homotopy, and applications
%D 2015
%P 317-341
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n2.a15/
%R 10.4310/HHA.2015.v17.n2.a15
%G en
%F HHA_2015_17_2_a14
Keiichi Sakai. Lin–Wang type formula for the Haefliger invariant. Homology, homotopy, and applications, Tome 17 (2015) no. 2, pp. 317-341. doi : 10.4310/HHA.2015.v17.n2.a15. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n2.a15/

Cité par Sources :