The existence of homotopy resolutions of $N$-complexes
Homology, homotopy, and applications, Tome 17 (2015) no. 2, pp. 291-316.

Voir la notice de l'article provenant de la source International Press of Boston

In this paper complexes with $N$-nilpotent differentials are considered. We proceed by generalizing a defining property of injective and projective resolutions to define $dg$-injective and $dg$-projective $N$-complexes, and construct $dg$-injective and $dg$-projective resolutions for arbitrary $N$-complexes. As applications of these results, we prove that the category $\mathcal{D}_N(R)$ is compactly generated, the category $\mathcal{K}_N(\mathscr{I})$ of injectives is compactly generated whenever $R$ is left noetherian, and the category $\mathcal{K}_N(\mathscr{P})$ of projectives is compactly generated whenever $R$ is a right coherent ring for which every flat left $R$-module has finite projective dimension. We also establish a recollement of the category $\mathcal{K}_N(R)$ relative to $\mathcal{K}^{ex}_N(R)$ and $\mathcal{D}_N(R)$.
DOI : 10.4310/HHA.2015.v17.n2.a14
Classification : 18E30, 18G10, 18G35
Keywords: $N$-complex, homotopy category, homotopy resolution, recollement
@article{HHA_2015_17_2_a13,
     author = {Xiaoyan Yang and Junpeng Wang},
     title = {The existence of homotopy resolutions of $N$-complexes},
     journal = {Homology, homotopy, and applications},
     pages = {291--316},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2015},
     doi = {10.4310/HHA.2015.v17.n2.a14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n2.a14/}
}
TY  - JOUR
AU  - Xiaoyan Yang
AU  - Junpeng Wang
TI  - The existence of homotopy resolutions of $N$-complexes
JO  - Homology, homotopy, and applications
PY  - 2015
SP  - 291
EP  - 316
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n2.a14/
DO  - 10.4310/HHA.2015.v17.n2.a14
LA  - en
ID  - HHA_2015_17_2_a13
ER  - 
%0 Journal Article
%A Xiaoyan Yang
%A Junpeng Wang
%T The existence of homotopy resolutions of $N$-complexes
%J Homology, homotopy, and applications
%D 2015
%P 291-316
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n2.a14/
%R 10.4310/HHA.2015.v17.n2.a14
%G en
%F HHA_2015_17_2_a13
Xiaoyan Yang; Junpeng Wang. The existence of homotopy resolutions of $N$-complexes. Homology, homotopy, and applications, Tome 17 (2015) no. 2, pp. 291-316. doi : 10.4310/HHA.2015.v17.n2.a14. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n2.a14/

Cité par Sources :