Kirchhoff’s theorems in higher dimensions and Reidemeister torsion
Homology, homotopy, and applications, Tome 17 (2015) no. 1, pp. 165-189.

Voir la notice de l'article provenant de la source International Press of Boston

Using ideas from algebraic topology and statistical mechanics, we generalize Kirchhoff’s network and matrix-tree theorems to finite CW complexes of arbitrary dimension. As an application, we give a formula expressing Reidemeister torsion as an enumeration of higher dimensional spanning trees.
DOI : 10.4310/HHA.2015.v17.n1.a8
Classification : 55U15, 57M15, 57Q10, 05C05, 05C21, 05E45, 82C31
Keywords: CW complex, Reidemeister torsion, combinatorial Laplacian, Kirchhoff’s formulae
@article{HHA_2015_17_1_a7,
     author = {Michael J. Catanzaro and Vladimir Y. Chernyak and John R. Klein},
     title = {Kirchhoff{\textquoteright}s theorems in higher dimensions and {Reidemeister} torsion},
     journal = {Homology, homotopy, and applications},
     pages = {165--189},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2015},
     doi = {10.4310/HHA.2015.v17.n1.a8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n1.a8/}
}
TY  - JOUR
AU  - Michael J. Catanzaro
AU  - Vladimir Y. Chernyak
AU  - John R. Klein
TI  - Kirchhoff’s theorems in higher dimensions and Reidemeister torsion
JO  - Homology, homotopy, and applications
PY  - 2015
SP  - 165
EP  - 189
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n1.a8/
DO  - 10.4310/HHA.2015.v17.n1.a8
LA  - en
ID  - HHA_2015_17_1_a7
ER  - 
%0 Journal Article
%A Michael J. Catanzaro
%A Vladimir Y. Chernyak
%A John R. Klein
%T Kirchhoff’s theorems in higher dimensions and Reidemeister torsion
%J Homology, homotopy, and applications
%D 2015
%P 165-189
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n1.a8/
%R 10.4310/HHA.2015.v17.n1.a8
%G en
%F HHA_2015_17_1_a7
Michael J. Catanzaro; Vladimir Y. Chernyak; John R. Klein. Kirchhoff’s theorems in higher dimensions and Reidemeister torsion. Homology, homotopy, and applications, Tome 17 (2015) no. 1, pp. 165-189. doi : 10.4310/HHA.2015.v17.n1.a8. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n1.a8/

Cité par Sources :