Coefficients for higher order Hochschild cohomology
Homology, homotopy, and applications, Tome 17 (2015) no. 1, pp. 111-120.

Voir la notice de l'article provenant de la source International Press of Boston

When studying deformations of an $A$-module $M$, Laudal and Yau showed that one can consider $1$-cocycles in the Hochschild cohomology of with coefficients in the bi-module $\mathit{End \,}_k(M)$.With this in mind, the use of higher order Hochschild (co)homology, presented by Pirashvili and Anderson, to study deformations seems only natural though the current definition allows only symmetric bi-module coefficients. In this paper we present an extended definition for higher order Hochschild cohomology which allows multi-module coefficients (when the simplicial sets $\mathbf{X}_{\bullet}$ are accommodating), which agrees with the current definition. Furthermore, we determine the types of modules that can be used as coefficients for the Hochschild cochain complexes based on the simplicial sets they are associated to.
DOI : 10.4310/HHA.2015.v17.n1.a4
Classification : 13D03, 13D10, 16S80, 18G30, 55U10
Keywords: Hochschild, cohomology, higher order, simplicial, deformation, multi-module, coefficient
@article{HHA_2015_17_1_a3,
     author = {Bruce R. Corrigan-Salter},
     title = {Coefficients for higher order {Hochschild} cohomology},
     journal = {Homology, homotopy, and applications},
     pages = {111--120},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2015},
     doi = {10.4310/HHA.2015.v17.n1.a4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n1.a4/}
}
TY  - JOUR
AU  - Bruce R. Corrigan-Salter
TI  - Coefficients for higher order Hochschild cohomology
JO  - Homology, homotopy, and applications
PY  - 2015
SP  - 111
EP  - 120
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n1.a4/
DO  - 10.4310/HHA.2015.v17.n1.a4
LA  - en
ID  - HHA_2015_17_1_a3
ER  - 
%0 Journal Article
%A Bruce R. Corrigan-Salter
%T Coefficients for higher order Hochschild cohomology
%J Homology, homotopy, and applications
%D 2015
%P 111-120
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n1.a4/
%R 10.4310/HHA.2015.v17.n1.a4
%G en
%F HHA_2015_17_1_a3
Bruce R. Corrigan-Salter. Coefficients for higher order Hochschild cohomology. Homology, homotopy, and applications, Tome 17 (2015) no. 1, pp. 111-120. doi : 10.4310/HHA.2015.v17.n1.a4. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n1.a4/

Cité par Sources :