Motivic Landweber exact theories and their effective covers
Homology, homotopy, and applications, Tome 17 (2015) no. 1, pp. 377-400.

Voir la notice de l'article provenant de la source International Press of Boston

Let $k$ be a field of characteristic $0$, and let $(F,R)$ be a Landweber exact formal group law. We consider a Landweber exact $T$-spectrum $\mathcal{E}:=R\otimes_\mathbb{L}\mathrm{MGL}$ and its effective cover $f_0\mathcal{E}\to \mathcal{E}$ with respect to Voevodsky’s slice tower. The coefficient ring $R_0$ of $f_0\mathcal{E}$ is the subring of $R$ consisting of elements of $R$ of non-positive degree; the power series $F\in R[[u,v]]$ has coefficients in $R_0$, although $(F,R_0)$ is not necessarily Landweber exact. We show that the geometric part $X\mapsto f_0\mathcal{E}^*(X):=(f_0\mathcal{E})^{2*,*}(X)$ of $f_0\mathcal{E}$ is canonically isomorphic to the oriented cohomology theory $X\mapsto R_0 \otimes_\mathbb{L} \Omega^*(X)$, where $\Omega^*$ is the theory of algebraic cobordism as defined in [12]. This recovers results of Dai–Levine [2] as the special case of algebraic $K$-theory and its effective cover, connective algebraic $K$-theory.
DOI : 10.4310/HHA.2015.v17.n1.a18
Classification : 14C25, 19E15, 14F42, 19E08, 55P42
Keywords: algebraic cobordism, oriented theory, slice tower
@article{HHA_2015_17_1_a17,
     author = {Marc Levine},
     title = {Motivic {Landweber} exact theories and their effective covers},
     journal = {Homology, homotopy, and applications},
     pages = {377--400},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2015},
     doi = {10.4310/HHA.2015.v17.n1.a18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n1.a18/}
}
TY  - JOUR
AU  - Marc Levine
TI  - Motivic Landweber exact theories and their effective covers
JO  - Homology, homotopy, and applications
PY  - 2015
SP  - 377
EP  - 400
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n1.a18/
DO  - 10.4310/HHA.2015.v17.n1.a18
LA  - en
ID  - HHA_2015_17_1_a17
ER  - 
%0 Journal Article
%A Marc Levine
%T Motivic Landweber exact theories and their effective covers
%J Homology, homotopy, and applications
%D 2015
%P 377-400
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n1.a18/
%R 10.4310/HHA.2015.v17.n1.a18
%G en
%F HHA_2015_17_1_a17
Marc Levine. Motivic Landweber exact theories and their effective covers. Homology, homotopy, and applications, Tome 17 (2015) no. 1, pp. 377-400. doi : 10.4310/HHA.2015.v17.n1.a18. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n1.a18/

Cité par Sources :