Subalgebras of the $\mathbb{Z}/2$-equivariant Steenrod algebra
Homology, homotopy, and applications, Tome 17 (2015) no. 1, pp. 281-305.

Voir la notice de l'article provenant de la source International Press of Boston

The aim of this paper is to study subalgebras of the $\mathbb{Z}/2$- equivariant Steenrod algebra (for cohomology with coefficients in the constant Mackey functor $\underline{\mathbb{F}_2}$) that come from quotient Hopf algebroids of the $\mathbb{Z}/2$-equivariant dual Steenrod algebra. In particular, we study the equivariant counterpart of profile functions, exhibit the equivariant analogues of the classical $\mathcal{A}(n)$ and $\mathcal{E}(n)$, and show that the Steenrod algebra is free as a module over these.
DOI : 10.4310/HHA.2015.v17.n1.a14
Classification : 55S10, 55S91
Keywords: cohomology operation, Hopf algebroid, equivariant Steenrod algebra
@article{HHA_2015_17_1_a13,
     author = {Nicolas Ricka},
     title = {Subalgebras of the $\mathbb{Z}/2$-equivariant {Steenrod} algebra},
     journal = {Homology, homotopy, and applications},
     pages = {281--305},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2015},
     doi = {10.4310/HHA.2015.v17.n1.a14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n1.a14/}
}
TY  - JOUR
AU  - Nicolas Ricka
TI  - Subalgebras of the $\mathbb{Z}/2$-equivariant Steenrod algebra
JO  - Homology, homotopy, and applications
PY  - 2015
SP  - 281
EP  - 305
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n1.a14/
DO  - 10.4310/HHA.2015.v17.n1.a14
LA  - en
ID  - HHA_2015_17_1_a13
ER  - 
%0 Journal Article
%A Nicolas Ricka
%T Subalgebras of the $\mathbb{Z}/2$-equivariant Steenrod algebra
%J Homology, homotopy, and applications
%D 2015
%P 281-305
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n1.a14/
%R 10.4310/HHA.2015.v17.n1.a14
%G en
%F HHA_2015_17_1_a13
Nicolas Ricka. Subalgebras of the $\mathbb{Z}/2$-equivariant Steenrod algebra. Homology, homotopy, and applications, Tome 17 (2015) no. 1, pp. 281-305. doi : 10.4310/HHA.2015.v17.n1.a14. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n1.a14/

Cité par Sources :