Power maps on quasi-$p$-regular $SU(n)$
Homology, homotopy, and applications, Tome 17 (2015) no. 1, pp. 235-254.

Voir la notice de l'article provenant de la source International Press of Boston

In the paper we will show that the $p^3$ power map on $SU(p+t-1)$ is an H-map for $2 \leq t \leq p-1$. To do this we will consider a fibration whose base space is $SU(p+t-1)$ with the property that there is a section into the total space. We will then use decomposition methods to identify the fibre and the map from it to the total space. This information will be used to deduce information about $SU(p+t-1)$. In doing this we draw together recent work of Kishimoto and Theriault with more classical work of Cohen and Neisendorfer, and make use of the classical theorems of Hilton and Milnor, and James and Barrett.
DOI : 10.4310/HHA.2015.v17.n1.a11
Classification : 55P35, 55T99
Keywords: power map, Lie group, quasi-$p$-regular
@article{HHA_2015_17_1_a10,
     author = {Andrew Russhard},
     title = {Power maps on quasi-$p$-regular $SU(n)$},
     journal = {Homology, homotopy, and applications},
     pages = {235--254},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2015},
     doi = {10.4310/HHA.2015.v17.n1.a11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n1.a11/}
}
TY  - JOUR
AU  - Andrew Russhard
TI  - Power maps on quasi-$p$-regular $SU(n)$
JO  - Homology, homotopy, and applications
PY  - 2015
SP  - 235
EP  - 254
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n1.a11/
DO  - 10.4310/HHA.2015.v17.n1.a11
LA  - en
ID  - HHA_2015_17_1_a10
ER  - 
%0 Journal Article
%A Andrew Russhard
%T Power maps on quasi-$p$-regular $SU(n)$
%J Homology, homotopy, and applications
%D 2015
%P 235-254
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n1.a11/
%R 10.4310/HHA.2015.v17.n1.a11
%G en
%F HHA_2015_17_1_a10
Andrew Russhard. Power maps on quasi-$p$-regular $SU(n)$. Homology, homotopy, and applications, Tome 17 (2015) no. 1, pp. 235-254. doi : 10.4310/HHA.2015.v17.n1.a11. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2015.v17.n1.a11/

Cité par Sources :