Coalgebraic models for combinatorial model categories
Homology, homotopy, and applications, Tome 16 (2014) no. 2, pp. 171-184.

Voir la notice de l'article provenant de la source International Press of Boston

We show that the category of algebraically cofibrant objects in a combinatorial and simplicial model category $\mathcal{A}$ has a model structure that is left-induced from that on $\mathcal{A}$. In particular, it follows that any presentable model category is Quillen equivalent (via a single Quillen equivalence) to one in which all objects are cofibrant.
DOI : 10.4310/HHA.2014.v16.n2.a9
Classification : 18C35, 55U40
Keywords: model category, cofibrant object, coalgebra
@article{HHA_2014_16_2_a8,
     author = {Michael Ching and Emily Riehl},
     title = {Coalgebraic models for combinatorial model categories},
     journal = {Homology, homotopy, and applications},
     pages = {171--184},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2014},
     doi = {10.4310/HHA.2014.v16.n2.a9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a9/}
}
TY  - JOUR
AU  - Michael Ching
AU  - Emily Riehl
TI  - Coalgebraic models for combinatorial model categories
JO  - Homology, homotopy, and applications
PY  - 2014
SP  - 171
EP  - 184
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a9/
DO  - 10.4310/HHA.2014.v16.n2.a9
LA  - en
ID  - HHA_2014_16_2_a8
ER  - 
%0 Journal Article
%A Michael Ching
%A Emily Riehl
%T Coalgebraic models for combinatorial model categories
%J Homology, homotopy, and applications
%D 2014
%P 171-184
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a9/
%R 10.4310/HHA.2014.v16.n2.a9
%G en
%F HHA_2014_16_2_a8
Michael Ching; Emily Riehl. Coalgebraic models for combinatorial model categories. Homology, homotopy, and applications, Tome 16 (2014) no. 2, pp. 171-184. doi : 10.4310/HHA.2014.v16.n2.a9. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a9/

Cité par Sources :