$L_{\infty}$-algebras of local observables from higher prequantum bundles
Homology, homotopy, and applications, Tome 16 (2014) no. 2, pp. 107-142.

Voir la notice de l'article provenant de la source International Press of Boston

To any manifold equipped with a higher degree closed form, one can associate an $L_\infty$-algebra of local observables that generalizes the Poisson algebra of a symplectic manifold. Here, by means of an explicit homotopy equivalence, we interpret this $L_\infty$-algebra in terms of infinitesimal autoequivalences of higher prequantum bundles. By truncating the connection data on the prequantum bundle, we produce analogues of the (higher) Lie algebras of sections of the Atiyah Lie algebroid and of the Courant Lie 2-algebroid. We also exhibit the $L_\infty$-cocycle that realizes the $L_\infty$-algebra of local observables as a Kirillov-Kostant-Souriau-type $L_\infty$-extension of the Hamiltonian vector fields. When restricted along a Lie algebra action, this yields Heisenberg-like $L_\infty$-algebras such as the string Lie 2-algebra of a semisimple Lie algebra.
DOI : 10.4310/HHA.2014.v16.n2.a6
Classification : 18G55, 53C08, 53D50
Keywords: geometric quantization, gerbes, homotopical algebra
@article{HHA_2014_16_2_a5,
     author = {Domenico Fiorenza and Christopher L. Rogers and Urs Schreiber},
     title = {$L_{\infty}$-algebras of local observables from higher prequantum bundles},
     journal = {Homology, homotopy, and applications},
     pages = {107--142},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2014},
     doi = {10.4310/HHA.2014.v16.n2.a6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a6/}
}
TY  - JOUR
AU  - Domenico Fiorenza
AU  - Christopher L. Rogers
AU  - Urs Schreiber
TI  - $L_{\infty}$-algebras of local observables from higher prequantum bundles
JO  - Homology, homotopy, and applications
PY  - 2014
SP  - 107
EP  - 142
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a6/
DO  - 10.4310/HHA.2014.v16.n2.a6
LA  - en
ID  - HHA_2014_16_2_a5
ER  - 
%0 Journal Article
%A Domenico Fiorenza
%A Christopher L. Rogers
%A Urs Schreiber
%T $L_{\infty}$-algebras of local observables from higher prequantum bundles
%J Homology, homotopy, and applications
%D 2014
%P 107-142
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a6/
%R 10.4310/HHA.2014.v16.n2.a6
%G en
%F HHA_2014_16_2_a5
Domenico Fiorenza; Christopher L. Rogers; Urs Schreiber. $L_{\infty}$-algebras of local observables from higher prequantum bundles. Homology, homotopy, and applications, Tome 16 (2014) no. 2, pp. 107-142. doi : 10.4310/HHA.2014.v16.n2.a6. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a6/

Cité par Sources :