Weak Lefschetz for Chow groups: Infinitesimal lifting
Homology, homotopy, and applications, Tome 16 (2014) no. 2, pp. 65-84.

Voir la notice de l'article provenant de la source International Press of Boston

Let $X$ be a smooth projective variety over an algebraically closed field $k$ of characteristic zero, and let $Y \subset X$ be a smooth ample hyperplane section. The Weak Lefschetz conjecture for Chow groups states that the natural restriction map $\mathrm{CH}^p (X)_{\mathbb{Q}} \to \mathrm{CH}^p (Y)_{\mathbb{Q}}$ is an isomorphism for all $p \lt \dim (Y) / 2$. In this note, we revisit a strategy introduced by Grothendieck to attack this problem by using the Bloch-Quillen formula to factor this morphism through a continuous $\mathrm{K}$-cohomology group on the formal completion of $X$ along $Y$. This splits the conjecture into two smaller conjectures: one consisting of an algebraization problem and the other dealing with infinitesimal liftings of algebraic cycles. We give a complete proof of the infinitesimal part of the conjecture.
DOI : 10.4310/HHA.2014.v16.n2.a4
Classification : 14C25, 14C35
Keywords: $K$-theory, algebraic cycles
@article{HHA_2014_16_2_a3,
     author = {D. Patel and G. V. Ravindra},
     title = {Weak {Lefschetz} for {Chow} groups: {Infinitesimal} lifting},
     journal = {Homology, homotopy, and applications},
     pages = {65--84},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2014},
     doi = {10.4310/HHA.2014.v16.n2.a4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a4/}
}
TY  - JOUR
AU  - D. Patel
AU  - G. V. Ravindra
TI  - Weak Lefschetz for Chow groups: Infinitesimal lifting
JO  - Homology, homotopy, and applications
PY  - 2014
SP  - 65
EP  - 84
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a4/
DO  - 10.4310/HHA.2014.v16.n2.a4
LA  - en
ID  - HHA_2014_16_2_a3
ER  - 
%0 Journal Article
%A D. Patel
%A G. V. Ravindra
%T Weak Lefschetz for Chow groups: Infinitesimal lifting
%J Homology, homotopy, and applications
%D 2014
%P 65-84
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a4/
%R 10.4310/HHA.2014.v16.n2.a4
%G en
%F HHA_2014_16_2_a3
D. Patel; G. V. Ravindra. Weak Lefschetz for Chow groups: Infinitesimal lifting. Homology, homotopy, and applications, Tome 16 (2014) no. 2, pp. 65-84. doi : 10.4310/HHA.2014.v16.n2.a4. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a4/

Cité par Sources :