Homotopy representations over the orbit category
Homology, homotopy, and applications, Tome 16 (2014) no. 2, pp. 345-369.

Voir la notice de l'article provenant de la source International Press of Boston

Let $G$ be a finite group. The unit sphere in a finite-dimensional orthogonal $G$-representation motivates the definition of homotopy representations, due to tom Dieck. We introduce an algebraic analogue and establish its basic properties, including the Borel-Smith conditions and realization by finite $G$-CW-complexes.
DOI : 10.4310/HHA.2014.v16.n2.a19
Classification : 18G35, 20J05, 55U15, 57S17
Keywords: homotopy representation, orbit category
@article{HHA_2014_16_2_a18,
     author = {Ian Hambleton and Erg\"un Yal\c{c}in},
     title = {Homotopy representations over the orbit category},
     journal = {Homology, homotopy, and applications},
     pages = {345--369},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2014},
     doi = {10.4310/HHA.2014.v16.n2.a19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a19/}
}
TY  - JOUR
AU  - Ian Hambleton
AU  - Ergün Yalçin
TI  - Homotopy representations over the orbit category
JO  - Homology, homotopy, and applications
PY  - 2014
SP  - 345
EP  - 369
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a19/
DO  - 10.4310/HHA.2014.v16.n2.a19
LA  - en
ID  - HHA_2014_16_2_a18
ER  - 
%0 Journal Article
%A Ian Hambleton
%A Ergün Yalçin
%T Homotopy representations over the orbit category
%J Homology, homotopy, and applications
%D 2014
%P 345-369
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a19/
%R 10.4310/HHA.2014.v16.n2.a19
%G en
%F HHA_2014_16_2_a18
Ian Hambleton; Ergün Yalçin. Homotopy representations over the orbit category. Homology, homotopy, and applications, Tome 16 (2014) no. 2, pp. 345-369. doi : 10.4310/HHA.2014.v16.n2.a19. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a19/

Cité par Sources :