Distance functions, critical points, and the topology of random Čech complexes
Homology, homotopy, and applications, Tome 16 (2014) no. 2, pp. 311-344.

Voir la notice de l'article provenant de la source International Press of Boston

For a finite set of points $\mathcal{P}$ in $\mathbb{R}^d$, the function $d_{\mathcal{P}} : \mathbb{R}^d \to \mathbb{R}^+$ measures Euclidean distance to the set $\mathcal{P}$. We study the number of critical points of $d_{\mathcal{P}}$ when $\mathcal{P}$ is a Poisson process. In particular, we study the limit behavior of $N_k$—the number of critical points of $d_{\mathcal{P}}$ with Morse index $k$—as the density of points grows. We present explicit computations for the normalized limiting expectations and variances of the $N_k$, as well as distributional limit theorems. We link these results to recent results in [16, 17] in which the Betti numbers of the random Čech complex based on $\mathcal{P}$ were studied.
DOI : 10.4310/HHA.2014.v16.n2.a18
Classification : 55U10, 58K05, 60D05, 60F05, 60G55
Keywords: distance function, critical points, Morse index, Čech complex, Poisson process, central limit theorem, Betti numbers
@article{HHA_2014_16_2_a17,
     author = {Omer Bobrowski and Robert J. Adler},
     title = {Distance functions, critical points, and the topology of random {\v{C}ech} complexes},
     journal = {Homology, homotopy, and applications},
     pages = {311--344},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2014},
     doi = {10.4310/HHA.2014.v16.n2.a18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a18/}
}
TY  - JOUR
AU  - Omer Bobrowski
AU  - Robert J. Adler
TI  - Distance functions, critical points, and the topology of random Čech complexes
JO  - Homology, homotopy, and applications
PY  - 2014
SP  - 311
EP  - 344
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a18/
DO  - 10.4310/HHA.2014.v16.n2.a18
LA  - en
ID  - HHA_2014_16_2_a17
ER  - 
%0 Journal Article
%A Omer Bobrowski
%A Robert J. Adler
%T Distance functions, critical points, and the topology of random Čech complexes
%J Homology, homotopy, and applications
%D 2014
%P 311-344
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a18/
%R 10.4310/HHA.2014.v16.n2.a18
%G en
%F HHA_2014_16_2_a17
Omer Bobrowski; Robert J. Adler. Distance functions, critical points, and the topology of random Čech complexes. Homology, homotopy, and applications, Tome 16 (2014) no. 2, pp. 311-344. doi : 10.4310/HHA.2014.v16.n2.a18. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a18/

Cité par Sources :