A useful lemma on equivariant maps
Homology, homotopy, and applications, Tome 16 (2014) no. 2, pp. 307-309.

Voir la notice de l'article provenant de la source International Press of Boston

We present a short proof of the following known result. Suppose $X, Y$ are finite connected CW-complexes with free involutions, $f \colon X \to Y$ is an equivariant map, and $l$ is a non-negative integer. If $f^* \colon H^i (Y) \to H^i (X)$ is an isomorphism for each $i>l$ and is onto for $i=l$, then $f^{\sharp} \colon \pi^i_{eq}(Y)\to \pi^i_{eq}(X)$ is a $\mbox{1-1}$ correspondence for $i>l$ and is onto for $i=l$.
DOI : 10.4310/HHA.2014.v16.n2.a17
Classification : 55S15
Keywords: equivariant maps, twisted coefficients
@article{HHA_2014_16_2_a16,
     author = {D. Gon\c{c}alves and A. Skopenkov},
     title = {A useful lemma on equivariant maps},
     journal = {Homology, homotopy, and applications},
     pages = {307--309},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2014},
     doi = {10.4310/HHA.2014.v16.n2.a17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a17/}
}
TY  - JOUR
AU  - D. Gonçalves
AU  - A. Skopenkov
TI  - A useful lemma on equivariant maps
JO  - Homology, homotopy, and applications
PY  - 2014
SP  - 307
EP  - 309
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a17/
DO  - 10.4310/HHA.2014.v16.n2.a17
LA  - en
ID  - HHA_2014_16_2_a16
ER  - 
%0 Journal Article
%A D. Gonçalves
%A A. Skopenkov
%T A useful lemma on equivariant maps
%J Homology, homotopy, and applications
%D 2014
%P 307-309
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a17/
%R 10.4310/HHA.2014.v16.n2.a17
%G en
%F HHA_2014_16_2_a16
D. Gonçalves; A. Skopenkov. A useful lemma on equivariant maps. Homology, homotopy, and applications, Tome 16 (2014) no. 2, pp. 307-309. doi : 10.4310/HHA.2014.v16.n2.a17. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a17/

Cité par Sources :