Properness and simplicial resolutions in the model category $\mathbf{dgCat}$
Homology, homotopy, and applications, Tome 16 (2014) no. 2, pp. 263-273.

Voir la notice de l'article provenant de la source International Press of Boston

We give an elementary proof that the model category of dg-categories over a ring of flat dimension 0 is left proper and we provide a construction of simplicial resolutions in dg-categories, given by categories of Maurer–Cartan elements.
DOI : 10.4310/HHA.2014.v16.n2.a14
Classification : 18D20, 18G55
Keywords: differential graded category, model category
@article{HHA_2014_16_2_a13,
     author = {Julian V. S. Holstein},
     title = {Properness and simplicial resolutions in the model category $\mathbf{dgCat}$},
     journal = {Homology, homotopy, and applications},
     pages = {263--273},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2014},
     doi = {10.4310/HHA.2014.v16.n2.a14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a14/}
}
TY  - JOUR
AU  - Julian V. S. Holstein
TI  - Properness and simplicial resolutions in the model category $\mathbf{dgCat}$
JO  - Homology, homotopy, and applications
PY  - 2014
SP  - 263
EP  - 273
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a14/
DO  - 10.4310/HHA.2014.v16.n2.a14
LA  - en
ID  - HHA_2014_16_2_a13
ER  - 
%0 Journal Article
%A Julian V. S. Holstein
%T Properness and simplicial resolutions in the model category $\mathbf{dgCat}$
%J Homology, homotopy, and applications
%D 2014
%P 263-273
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a14/
%R 10.4310/HHA.2014.v16.n2.a14
%G en
%F HHA_2014_16_2_a13
Julian V. S. Holstein. Properness and simplicial resolutions in the model category $\mathbf{dgCat}$. Homology, homotopy, and applications, Tome 16 (2014) no. 2, pp. 263-273. doi : 10.4310/HHA.2014.v16.n2.a14. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a14/

Cité par Sources :