Homology operations in symmetric homology
Homology, homotopy, and applications, Tome 16 (2014) no. 2, pp. 239-261.

Voir la notice de l'article provenant de la source International Press of Boston

The symmetric homology of a unital associative algebra $A$ over a commutative ground ring $k$, denoted $HS_*(A)$, is defined using derived functors and the symmetric bar construction of Fiedorowicz. In this paper we show that $HS_*(A)$ admits homology operations and a Pontryagin product structure making $HS_*(A)$ an associative commutative graded algebra. This is done by finding an explicit $E_{\infty}$ structure on the standard chain groups that compute symmetric homology.
DOI : 10.4310/HHA.2014.v16.n2.a13
Classification : 13D03, 55N35
Keywords: symmetric homology, cyclic homology, homology operation, $E_{\infty}$ algebra
@article{HHA_2014_16_2_a12,
     author = {Shaun V. Ault},
     title = {Homology operations in symmetric homology},
     journal = {Homology, homotopy, and applications},
     pages = {239--261},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2014},
     doi = {10.4310/HHA.2014.v16.n2.a13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a13/}
}
TY  - JOUR
AU  - Shaun V. Ault
TI  - Homology operations in symmetric homology
JO  - Homology, homotopy, and applications
PY  - 2014
SP  - 239
EP  - 261
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a13/
DO  - 10.4310/HHA.2014.v16.n2.a13
LA  - en
ID  - HHA_2014_16_2_a12
ER  - 
%0 Journal Article
%A Shaun V. Ault
%T Homology operations in symmetric homology
%J Homology, homotopy, and applications
%D 2014
%P 239-261
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a13/
%R 10.4310/HHA.2014.v16.n2.a13
%G en
%F HHA_2014_16_2_a12
Shaun V. Ault. Homology operations in symmetric homology. Homology, homotopy, and applications, Tome 16 (2014) no. 2, pp. 239-261. doi : 10.4310/HHA.2014.v16.n2.a13. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a13/

Cité par Sources :