Bousfield lattices of non-Noetherian rings: some quotients and products
Homology, homotopy, and applications, Tome 16 (2014) no. 2, pp. 205-229.

Voir la notice de l'article provenant de la source International Press of Boston

In the context of a well generated tensor triangulated category, Section 3 investigates the relationship between the Bousfield lattice of a quotient and quotients of the Bousfield lattice. In Section 4 we develop a general framework to study the Bousfield lattice of the derived category of a commutative or graded-commutative ring, using derived functors induced by extension of scalars. Section 5 applies this work to extend results of Dwyer and Palmieri to new non-Noetherian rings.
DOI : 10.4310/HHA.2014.v16.n2.a11
Classification : 13D02, 13D09, 18D10, 18E30, 55U35
Keywords: Bousfield lattice, non-Noetherian, derived category
@article{HHA_2014_16_2_a10,
     author = {F. Luke Wolcott},
     title = {Bousfield lattices of {non-Noetherian} rings: some quotients and products},
     journal = {Homology, homotopy, and applications},
     pages = {205--229},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2014},
     doi = {10.4310/HHA.2014.v16.n2.a11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a11/}
}
TY  - JOUR
AU  - F. Luke Wolcott
TI  - Bousfield lattices of non-Noetherian rings: some quotients and products
JO  - Homology, homotopy, and applications
PY  - 2014
SP  - 205
EP  - 229
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a11/
DO  - 10.4310/HHA.2014.v16.n2.a11
LA  - en
ID  - HHA_2014_16_2_a10
ER  - 
%0 Journal Article
%A F. Luke Wolcott
%T Bousfield lattices of non-Noetherian rings: some quotients and products
%J Homology, homotopy, and applications
%D 2014
%P 205-229
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a11/
%R 10.4310/HHA.2014.v16.n2.a11
%G en
%F HHA_2014_16_2_a10
F. Luke Wolcott. Bousfield lattices of non-Noetherian rings: some quotients and products. Homology, homotopy, and applications, Tome 16 (2014) no. 2, pp. 205-229. doi : 10.4310/HHA.2014.v16.n2.a11. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n2.a11/

Cité par Sources :