Complexification and homotopy
Homology, homotopy, and applications, Tome 16 (2014) no. 1, pp. 159-165.

Voir la notice de l'article provenant de la source International Press of Boston

Let $Y$ be a real algebraic variety. We are interested in determining the supremum, $\beta(Y)$, of all nonnegative integers $n$ with the following property: For every $n$-dimensional compact connected nonsingular real algebraic variety $X$, every continuous map from $X$ into $Y$ is homotopic to a regular map. We give an upper bound for $\beta(Y)$, based on a construction involving complexification of real algebraic varieties. In some cases, we obtain the exact value of $\beta(Y)$.
DOI : 10.4310/HHA.2014.v16.n1.a9
Classification : 14P05, 14P25
Keywords: real algebraic variety, regular map, homotopy, complexification
@article{HHA_2014_16_1_a8,
     author = {Wojciech Kucharz and {\L}ukasz Maciejewski},
     title = {Complexification and homotopy},
     journal = {Homology, homotopy, and applications},
     pages = {159--165},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2014},
     doi = {10.4310/HHA.2014.v16.n1.a9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a9/}
}
TY  - JOUR
AU  - Wojciech Kucharz
AU  - Łukasz Maciejewski
TI  - Complexification and homotopy
JO  - Homology, homotopy, and applications
PY  - 2014
SP  - 159
EP  - 165
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a9/
DO  - 10.4310/HHA.2014.v16.n1.a9
LA  - en
ID  - HHA_2014_16_1_a8
ER  - 
%0 Journal Article
%A Wojciech Kucharz
%A Łukasz Maciejewski
%T Complexification and homotopy
%J Homology, homotopy, and applications
%D 2014
%P 159-165
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a9/
%R 10.4310/HHA.2014.v16.n1.a9
%G en
%F HHA_2014_16_1_a8
Wojciech Kucharz; Łukasz Maciejewski. Complexification and homotopy. Homology, homotopy, and applications, Tome 16 (2014) no. 1, pp. 159-165. doi : 10.4310/HHA.2014.v16.n1.a9. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a9/

Cité par Sources :