Note on the homotopy groups of a bouquet $S^1\vee Y$, $Y$ 1-connected
Homology, homotopy, and applications, Tome 16 (2014) no. 1, pp. 83-87.

Voir la notice de l'article provenant de la source International Press of Boston

A study is made of the action of the fundamental group of a bouquet of a circle and a 1-connected space on the higher homotopy groups. If the 1-connected space is a suspension space, it is shown, with the aid of a theorem of Hartley on wreath products of groups and the Hilton-Milnor theorem, that the action is residually nilpotent. An unsuccessful approach in the case of a general 1-connected space is discussed, as it has some interesting features.
DOI : 10.4310/HHA.2014.v16.n1.a5
Classification : 20E22, 20E26, 55P40, 55Q20
Keywords: action of fundamental group on higher homotopy groups, residually nilpotent group action, wreath product of groups, Hartley’s theorem, Hilton-Milnor theorem
@article{HHA_2014_16_1_a4,
     author = {Joseph Roitberg},
     title = {Note on the homotopy groups of a bouquet $S^1\vee Y$, $Y$ 1-connected},
     journal = {Homology, homotopy, and applications},
     pages = {83--87},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2014},
     doi = {10.4310/HHA.2014.v16.n1.a5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a5/}
}
TY  - JOUR
AU  - Joseph Roitberg
TI  - Note on the homotopy groups of a bouquet $S^1\vee Y$, $Y$ 1-connected
JO  - Homology, homotopy, and applications
PY  - 2014
SP  - 83
EP  - 87
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a5/
DO  - 10.4310/HHA.2014.v16.n1.a5
LA  - en
ID  - HHA_2014_16_1_a4
ER  - 
%0 Journal Article
%A Joseph Roitberg
%T Note on the homotopy groups of a bouquet $S^1\vee Y$, $Y$ 1-connected
%J Homology, homotopy, and applications
%D 2014
%P 83-87
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a5/
%R 10.4310/HHA.2014.v16.n1.a5
%G en
%F HHA_2014_16_1_a4
Joseph Roitberg. Note on the homotopy groups of a bouquet $S^1\vee Y$, $Y$ 1-connected. Homology, homotopy, and applications, Tome 16 (2014) no. 1, pp. 83-87. doi : 10.4310/HHA.2014.v16.n1.a5. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a5/

Cité par Sources :